亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

超級(jí)單片機(jī)

  • 有限差分法

    function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta)      %[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta)   %該函數用有限差分法求解有兩種介質的正方形區域的二維拉普拉斯方程的數值解   %函數返回迭代因子、迭代次數以及迭代完成后所求區域內網格節點處的值   %a為正方形求解區域的邊長   %r1,r2分別表示兩種介質的電導率   %up,under分別為上下邊界值   %num表示將區域每邊的網格剖分個數   %deta為迭代過程中所允許的相對誤差限      n=num+1; %每邊節點數   U(n,n)=0; %節點處數值矩陣   N=0; %迭代次數初值   alpha=2/(1+sin(pi/num));%超松弛迭代因子   k=r1/r2; %兩介質電導率之比   U(1,1:n)=up; %求解區域上邊界第一類邊界條件   U(n,1:n)=under; %求解區域下邊界第一類邊界條件   U(2:num,1)=0;U(2:num,n)=0;      for i=2:num   U(i,2:num)=up-(up-under)/num*(i-1);%采用線性賦值對上下邊界之間的節點賦迭代初值   end   G=1;   while G>0 %迭代條件:不滿足相對誤差限要求的節點數目G不為零   Un=U; %完成第n次迭代后所有節點處的值   G=0; %每完成一次迭代將不滿足相對誤差限要求的節點數目歸零   for j=1:n   for i=2:num   U1=U(i,j); %第n次迭代時網格節點處的值      if j==1 %第n+1次迭代左邊界第二類邊界條件   U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j));   end         if (j>1)&&(j                 U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j));    U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的網格節點處的值      end      if i==n+1-j %第n+1次迭代兩介質分界面(與網格對角線重合)第二類邊界條件   U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1)));      end      if j==n %第n+1次迭代右邊界第二類邊界條件   U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j));   end   end   end   N=N+1 %顯示迭代次數   Un1=U; %完成第n+1次迭代后所有節點處的值   err=abs((Un1-Un)./Un1);%第n+1次迭代與第n次迭代所有節點值的相對誤差   err(1,1:n)=0; %上邊界節點相對誤差置零   err(n,1:n)=0; %下邊界節點相對誤差置零    G=sum(sum(err>deta))%顯示每次迭代后不滿足相對誤差限要求的節點數目G   end

    標簽: 有限差分

    上傳時間: 2018-07-13

    上傳用戶:Kemin

  • 【經典的天線書籍】Practical Antenna Handbook

    ·基本信息Practical Antenna Handbook, 4th EditionbyJoseph J.Carr作者 Jeseph J. Carr 美國國防部航空電子(avionics)資深工程師one of the worlds leading and prolific writer and working scientist on electronics and radio, and an

    標簽: nbsp Practical Handbook Antenna

    上傳時間: 2013-04-24

    上傳用戶:yare

  • 對于電源故障保護應用,超級電容器能夠替代后備電池

    在越來越多的短時間能量存貯應用以及那些需要間歇式高能量脈衝的應用中,超級電容器找到了自己的用武之地。電源故障保護電路便是此類應用之一,在該電路中,如果主電源發生短時間故障,則接入一個後備電源,用於給負載供電

    標簽: 電源故障保護 后備電池 超級電容器

    上傳時間: 2014-01-08

    上傳用戶:lansedeyuntkn

  • 算法介紹 矩陣求逆在程序中很常見

    算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。

    標簽: 算法 矩陣求逆 程序

    上傳時間: 2015-04-09

    上傳用戶:wang5829

  • 最小重量機器設計問題 設某一機器由n個部件組成

    最小重量機器設計問題 設某一機器由n個部件組成,每一種部件都可以從m個不同的供應商處購得。設w(i,j)是從供應商j處購得的部件i的重量,C(i,j)是相應的價格。 設計一個優先列式分支限界法,給出總價格不超過c的最小重量機器設計。

    標簽: 機器 設計問題 部件

    上傳時間: 2014-01-22

    上傳用戶:stewart·

  • 給定n個整數a , a , ,an 1 2  組成的序列。序列中元素i a 的符號定義為: ï î ï í ì - < = > =

    給定n個整數a , a , ,an 1 2  組成的序列。序列中元素i a 的符號定義為: ï î ï í ì - < = > = 1 0 0 0 1 0 sgn( ) i i i i a a a a 符號平衡問題要求給定序列的最長符號平衡段的長度L,即: þ ý ü î í ì = + - = å = £ £ £ max 1| sgn( ) 0 1 j k i i j n k L j i a 。 例如,當n=10,相應序列為:1,1,-1,-2,0,1,3,-1,2,-1 時,L=9。

    標簽: iuml 61516 icirc 序列

    上傳時間: 2015-10-28

    上傳用戶:xaijhqx

  • 用遞推法產生正交多項式系

    用遞推法產生正交多項式系,即求alpha[j+1]、beta[j] 入口參數:m是數據點數,n是擬合的最高階數, float x[],float y[]是對應縱橫坐標,出口參數:a[] 是最小二乘擬合參數,alpha[]、beta[]是遞推系數

    標簽: 多項式

    上傳時間: 2014-01-19

    上傳用戶:gyq

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。

    標簽: Floyd-Warshall Shortest Pairs Paths

    上傳時間: 2013-12-01

    上傳用戶:dyctj

  • 程序名:ga_bp_predict.cpp 描述: 采用GA優化的BP神經網絡程序

    程序名:ga_bp_predict.cpp 描述: 采用GA優化的BP神經網絡程序,用于單因素時間 序列的預測,采用了單步與多步相結合預測 說明: 采用GA(浮點編碼)優化NN的初始權值W[j][i],V[k][j],然后再采用BP算法 優化權值

    標簽: ga_bp_predict cpp 程序 BP神經網絡

    上傳時間: 2014-02-18

    上傳用戶:冇尾飛鉈

  • 動態規劃的方程大家都知道

    動態規劃的方程大家都知道,就是 f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j] 但是很多人會懷疑這道題的后效性而放棄動規做法。 本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001 div 2]...) 無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗…… 反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。 xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)

    標簽: 動態規劃 方程

    上傳時間: 2014-07-16

    上傳用戶:libinxny

主站蜘蛛池模板: 马山县| 澜沧| 新疆| 闽侯县| 噶尔县| 林西县| 庆安县| 塔河县| 左贡县| 崇仁县| 河间市| 改则县| 五河县| 武胜县| 宜阳县| 安图县| 陈巴尔虎旗| 江门市| 雷波县| 特克斯县| 南阳市| 宁德市| 开阳县| 汶川县| 娱乐| 景宁| 保康县| 佛坪县| 西华县| 马公市| 娄底市| 建阳市| 铅山县| 临夏市| 阳曲县| 福泉市| 舟曲县| 福贡县| 乌鲁木齐县| 察雅县| 双江|