近紅外光譜法是血液成分無創(chuàng)檢測方法中的熱點,也是取得成果最多的方法之一。但是,個體差異和測量條件是影響近紅外光譜血液成分無創(chuàng)檢測的一個較突出的問題。而動態(tài)光譜法就是針對這個問題而提出的一種全新的近紅外無創(chuàng)血液成分濃度檢測方法。它從原理上消除了個體差異和測量條件等對光譜檢測的影響,為基于近紅外光譜法的血液成分無創(chuàng)檢測方法進入臨床應(yīng)用去除了一個較為關(guān)鍵的障礙。因此,本文根據(jù)動態(tài)光譜檢測原理設(shè)計了基于FPGA的動態(tài)光譜數(shù)據(jù)采集系統(tǒng)。 在分析了動態(tài)光譜數(shù)據(jù)采集系統(tǒng)的性能要求后,采用DALSA的高性能線陣CCD IL-C6-2048C作為光電轉(zhuǎn)換器件;根據(jù)CCD輸出數(shù)據(jù)的高速度和信號微弱及含有噪聲等特點,選用了高速、高精度、并帶有相關(guān)雙采樣芯片的圖像處理芯片AD9826作為模數(shù)轉(zhuǎn)換器件;以FPGA及其內(nèi)嵌的NIOSⅡ處理器作為核心控制器,并用LabVIEW對采集得到的數(shù)據(jù)進行顯示。 在FPGA中,利用Verilog HDL語言編寫了CCD和AD9826的控制時序;利用兩塊雙口RAM組成乒乓操作單元,實現(xiàn)高速數(shù)據(jù)的緩存,避免利用NiosⅡ處理器直接讀取時的頻繁中斷。將NIOSⅡ處理器系統(tǒng)嵌入到FPGA中,實現(xiàn)整個系統(tǒng)的管理。NiOSⅡ處理器利用中斷方式讀取緩存單元中的數(shù)據(jù)、經(jīng)對數(shù)變換后傳遞給計算機。其中緩存數(shù)據(jù)的讀取及對數(shù)變換均采用自定義組件的方式將硬件單元添加到NIOSⅡ系統(tǒng)中,編程時直接調(diào)用。NIOSⅡ系統(tǒng)通過串口將處理后的數(shù)據(jù)傳遞給LabVIEW, LabVIEW對數(shù)據(jù)簡單處理后顯示,以實時觀察采樣數(shù)據(jù)是否正確。 最后對系統(tǒng)進行了實驗測試,實驗結(jié)果表明,系統(tǒng)能夠很好的采集并顯示數(shù)據(jù),能夠初步完成光信號的檢測。
標簽: FPGA 動態(tài) 光譜數(shù)據(jù)
上傳時間: 2013-04-24
上傳用戶:luyanping
本文對基于FPGA的對象存儲控制器原型的硬件設(shè)計進行了研究。主要內(nèi)容如下: ⑴研究了對象存儲控制器的硬件設(shè)計,使其高效完成對象級接口的智能化管理和復(fù)雜存儲協(xié)議的解析,對對象存儲系統(tǒng)整體性能提升有重要意義。基于SoPC(片上可編程系統(tǒng))技術(shù),在FPGA(現(xiàn)場可編程門陣列)上實現(xiàn)的對象存儲控制器,具有功能配置靈活,調(diào)試方便,成本較低等優(yōu)點。 ⑵采用Cyclone II器件實現(xiàn)的對象存儲控制器的網(wǎng)絡(luò)接口,包含處理器模塊、內(nèi)存模塊、Flash模塊等核心組成部分,提供千兆以太網(wǎng)的網(wǎng)絡(luò)接口和PCI(周邊元件擴展接口)總線的主機接口,還具備電源模塊、時鐘模塊等以保證系統(tǒng)正常運行。在設(shè)計實現(xiàn)PCB(印制電路板)時,從疊層設(shè)計、布局、布線、阻抗匹配等多方面解決高達100MHz的全局時鐘帶來的信號完整性問題,并基于IBIS模型進行了信號完整性分析及仿真。針對各功能模塊提出了相應(yīng)的調(diào)試策略,并完成了部分模塊的調(diào)試工作。 ⑶提出了基于Virtex-4的對象存儲控制器系統(tǒng)設(shè)計方案,Virtex-4內(nèi)嵌PowerPC高性能處理器,可更好地完成對象存儲設(shè)備相關(guān)的控制和管理工作。實現(xiàn)了豐富的接口設(shè)計,包括千兆以太網(wǎng)、光纖通道、SATA(串行高級技術(shù)附件)等網(wǎng)絡(luò)存儲接口以及較PCI性能更優(yōu)異的PCI-X(并連的PCI總線)主機接口;提供多種FPGA配置方式。使用Cadence公司的Capture CIS工具完成了該系統(tǒng)硬件的原理圖繪制,通過了設(shè)計規(guī)則檢查,生成了網(wǎng)表用作下一步設(shè)計工作的交付文件。
上傳時間: 2013-04-24
上傳用戶:lijinchuan
當前,片上系統(tǒng)(SOC)已成為系統(tǒng)實現(xiàn)的主流技術(shù)。流片風(fēng)險與費用增加、上市時間壓力加大、產(chǎn)品功能愈加復(fù)雜等因素使得SOC產(chǎn)業(yè)逐漸劃分為IP提供者、SOC設(shè)計服務(wù)者和芯片集成者三個層次。SOC設(shè)計已走向基于IP集成的平臺設(shè)計階段,經(jīng)過嚴格驗證質(zhì)量可靠的IP核成為SOC產(chǎn)業(yè)中的重要一環(huán)。 GPIB控制器芯片是組建自動測試系統(tǒng)的核心,在測試領(lǐng)域應(yīng)用廣泛。本人通過查閱大量的技術(shù)資料,分析了集成電路在國內(nèi)外發(fā)展的最新動態(tài),提出了基于FPGA的自主知識產(chǎn)權(quán)的GPIB控制器IP核的設(shè)計和實現(xiàn)。 本文首先討論了基于FPGA的GPIB控制器的背景意義,接著對FPGA開發(fā)所具備的基本知識作了簡要介紹。文中對GPIB總線進行了簡單的描述,根據(jù)芯片設(shè)計的主要思想,重點在于論述怎樣用FPGA來實現(xiàn)IEEE-488.2協(xié)議,并詳細闡述了GPIB控制器的十種接口功能及其狀態(tài)機的IP核實現(xiàn)。同時,對數(shù)據(jù)通路也進行了較為細致的說明。在設(shè)計的時候采用基于模塊化設(shè)計思想,用VerilogHDL語言完成各模塊功能描述,通過Synplifv軟件的綜合,用Modelsim對設(shè)計進行了前、后仿真。最后利用生成的模塊符號采取類似畫電路圖的方法完成整個系統(tǒng)芯片的lP軟核設(shè)計,并用EDA工具下載到了FPGA上。 為了更好地驗證設(shè)計思想,借助EDA工具對GPIB控制器的工作狀態(tài)進行了軟件仿真,給出仿真結(jié)果,仿真波形驗證了GPIB控制器的工作符合預(yù)想。最后,本文對基于FPGA的GPIB控制器的IP核設(shè)計過程進行了總結(jié),展望了當前GPIB控制器設(shè)計的發(fā)展趨勢,指出了開展進一步研究需要做的工作。
上傳時間: 2013-06-12
上傳用戶:mqien
波前處理機是自適應(yīng)光學(xué)系統(tǒng)中實時信號處理和運算的核心,隨著自適應(yīng)光學(xué)系統(tǒng)得發(fā)展,波前傳感器的采樣頻率越來越高,這就要求波前處理機必須有更強的數(shù)據(jù)處理能力以保證系統(tǒng)的實時性。在整個波前處理機的工作流程中,對CCD傳來的實時圖像數(shù)據(jù)進行實時處理是第一步,也是十分重要的一步。如果不能保證圖像處理的實時性,那么后續(xù)的處理過程都無從談起。因此,研制高性能的圖像處理平臺,對波前處理機性能的提高具有十分重要的意義。 論文介紹了本研究課題的背景以及國內(nèi)外圖像處理技術(shù)的應(yīng)用和發(fā)展狀況,接著介紹了傳統(tǒng)的專用和通用圖像處理系統(tǒng)的結(jié)構(gòu)、特點和模型,并通過分析DSP芯片以及DSP系統(tǒng)的特點,提出了基于DSP和FPGA芯片的實時圖像處理系統(tǒng)。該系統(tǒng)不同于傳統(tǒng)基于PC機模式的圖像處理系統(tǒng),發(fā)揮了DSP和FPGA兩者的優(yōu)勢,能更好地提高圖像處理系統(tǒng)實時性能,同時也最大可能地降低成本。 論文根據(jù)圖像處理系統(tǒng)的設(shè)計目的、應(yīng)用需求確定了器件的選型。介紹了主要的器件,接著從系統(tǒng)架構(gòu)、邏輯結(jié)構(gòu)、硬件各功能模塊組成等方面詳細介紹了DSP+FPGA圖像處理系統(tǒng)硬件設(shè)計,并分析了包括各種參數(shù)指標選擇、連接方式在內(nèi)的具體設(shè)計方法以及應(yīng)該注意的問題。 論文在闡述傳輸線理論的基礎(chǔ)上,在制作PCB電路板的過程中,針對高速電路設(shè)計中易出現(xiàn)的問題,詳細分析了高速PCB設(shè)計中的信號完整性問題,包括反射、串擾等,說明了高速PCB的信號完整性、電源完整性和電磁兼容性問題及其解決方法,進行了一定的理論和技術(shù)探討和研究。 論文還介紹了基于FPGA的邏輯設(shè)計,包括了圖像采集模塊的工作原理、設(shè)計方案和SDRAM控制器的設(shè)計,介紹了SDRAM的基本操作和工作時序,重點闡述系統(tǒng)中可編程器件內(nèi)部模塊化SDRAM控制器的設(shè)計及仿真結(jié)果。 論文最后描述了硬件系統(tǒng)的測試及調(diào)試流程,并給出了部分的調(diào)試結(jié)果。 該系統(tǒng)主要優(yōu)點有:實時性、高速性。硬件設(shè)計的執(zhí)行速度,在高速DSP和FPGA中實現(xiàn)信號處理算法程序,保證了系統(tǒng)實時性的實現(xiàn);性價比高。自行研究設(shè)計的電路及硬件系統(tǒng)比較好的解決了高速實時圖像處理的需求。
上傳時間: 2013-05-30
上傳用戶:fxf126@126.com
隨著微電子技術(shù)的快速發(fā)展,電子設(shè)備逐漸向著小型化、集成化方向發(fā)展;人們在要求設(shè)備性能不斷提升的同時,還要求設(shè)備功耗低、體積小、重量輕、可靠性高。同樣在我軍武器裝備的研制過程中,也對各武器裝備都提出了新的要求,特別是針對單兵配備的便攜設(shè)備,對體積、功耗、擴展性的要求更是嚴格。 在某手持式設(shè)備的開發(fā)項目中,需要設(shè)計一塊接口板,要求實現(xiàn)高達8個串行口擴展以及能源管理和數(shù)字輸入輸出接口等功能,該接口板與處理器模塊的連接總線采用LPC總線,整個手持設(shè)備除了對功能有基本的要求以外,對體積及功耗都提出了極高的要求。針對項目的具體設(shè)計要求,經(jīng)過與傳統(tǒng)設(shè)計方法的比較,決定采用FPGA來實現(xiàn)LPC接口及UART控制器功能。 論文的主要目標是完成LPC接口的UART控制在FPGA中的實現(xiàn)。對于各模塊中的關(guān)鍵的功能部分,文中對其實現(xiàn)都進行了詳細的說明。整個設(shè)計全部采用硬件描述語言(HDL)實現(xiàn),并且采用了分模塊的設(shè)計風(fēng)格,具有很好的重用性。 為了在硬件平臺上驗證設(shè)計,還實做了FPGA驗證平臺,并用C語言編寫了測試程序。經(jīng)過驗證,該方案完全實現(xiàn)了接口板的功能要求,并且滿足體積和功耗上的要求,取得了良好的效果。 論文通過采用FPGA作為電路設(shè)計的核心,以一種新的數(shù)字電路設(shè)計方法實現(xiàn)電路功能;旨在通過這種方式,不斷提高設(shè)備的性能并拓展設(shè)計者思想。
上傳時間: 2013-04-24
上傳用戶:wlyang
基于微處理器的數(shù)字PID控制器改變了傳統(tǒng)模擬PID控制器參數(shù)整定不靈活的問題。但是常規(guī)微處理器容易在環(huán)境惡劣的情況下出現(xiàn)程序跑飛的問題,如果實現(xiàn)PID軟算法的微處理器因為強干擾或其他原因而出現(xiàn)故障,會引起輸出值的大幅度變化或停止響應(yīng)。而FPGA的應(yīng)用可以從本質(zhì)上解決這個問題。因此,利用FPGA開發(fā)技術(shù),實現(xiàn)智能控制器算法的芯片化,使之能夠廣泛的用于各種場合,具有很大的應(yīng)用意義。 首先分析FPGA的內(nèi)部結(jié)構(gòu)特點,總結(jié)FPGA設(shè)計技術(shù)及開發(fā)流程,指出實現(xiàn)結(jié)構(gòu)優(yōu)化設(shè)計,降低設(shè)計難度,是擴展設(shè)計功能、提高芯片性能和產(chǎn)品性價比的關(guān)鍵。控制系統(tǒng)由四個模塊組成,主要包括核心控制器模塊、輸入輸出模塊以及人機接口。其中控制器部分為系統(tǒng)的關(guān)鍵部件。在分析FPGA設(shè)計結(jié)構(gòu)類型和特點的基礎(chǔ)上,提出一種基于FPGA改進型并行結(jié)構(gòu)的PID溫度控制器設(shè)計方法。在PID算法與FPGA的運算器邏輯映像過程中,采用將補碼的加法器代替減法器設(shè)計,增加整數(shù)運算結(jié)果的位擴展處理,進行不同數(shù)據(jù)類型的整數(shù)歸一化等不同角度的處理方法融合為一體,可以有效地減少邏輯運算部件。應(yīng)用Ouartus Ⅱ圖形輸入與Verilog HDL語言相結(jié)合設(shè)計實現(xiàn)了PID控制器,用Modelsim仿真驗證了設(shè)計結(jié)果的正確性,用Synplify Pro進行電路綜合,在Quaitus Ⅱ軟件中實現(xiàn)布局布線,最后生成FPGA的編程文件。根據(jù)控制系統(tǒng)的要求,論文設(shè)計完成了12位模數(shù)AD轉(zhuǎn)換器、數(shù)據(jù)顯示器、按鍵等相關(guān)外圍接口電路。 將一階、純滯后、大慣性電阻爐溫作為控制對象,以EP1C3T144 FPGA為核心,構(gòu)建PID控制系統(tǒng)。在采用Pt100溫度傳感器、分辨率為2℃、最大溫度控制范圍0~400℃的條件下,實驗結(jié)果表明,達到無超調(diào)的穩(wěn)定控制要求,為降低FPGA實現(xiàn)PID控制器的設(shè)計難度提供了有效的方法。
上傳時間: 2013-06-13
上傳用戶:15071087253
以太網(wǎng)是在20世紀70年代為解決網(wǎng)絡(luò)中零散的和偶然的堵塞而開發(fā)的,而 IEEE802.3標準是在最初的以太網(wǎng)技術(shù)基礎(chǔ)上于1980年開發(fā)成功的。現(xiàn)在,以太網(wǎng)一詞泛指所有采用CSMA/CD協(xié)議的局域網(wǎng)。以太網(wǎng)2.0版由數(shù)字設(shè)備公司、 Intel公司和Xerox公司聯(lián)合開發(fā),它與IEEE802.3兼容。 本設(shè)計采用FPGA設(shè)計以太網(wǎng)控制器代替?zhèn)鹘y(tǒng)的ASCI設(shè)計方法,主要原因在于FPGA技術(shù)的特點,它作為專用集成電路(ASIC)領(lǐng)域中的一種半定制電路而出現(xiàn)的,既解決了定制電路的不足,又克服了原由可編程期間門電路數(shù)有限的缺點。使本設(shè)計的產(chǎn)品十分靈活,可以在多種用戶多種開發(fā)平臺,硬件環(huán)境下使用而只需要對設(shè)計進行簡單的修改和編輯即可,方便了設(shè)計者和用戶的使用。 本論文主要闡述了使用FPGA設(shè)計開發(fā)以太網(wǎng)控制器的設(shè)計開發(fā)流程,以及研究了FPGA開發(fā)方法和傳統(tǒng)ASIC開發(fā)方法的區(qū)別和優(yōu)略。主要內(nèi)容為: 1.闡述FPGA技術(shù)的發(fā)展歷史,現(xiàn)狀和將來的發(fā)展趨勢。 2.詳細說明了FPGA設(shè)計開發(fā)以太網(wǎng)控制器的全過程,包括模塊分析功能分析以及代碼設(shè)計。 3.采用軟件仿真的方法設(shè)計和驗證了MODELSIM仿真平臺以及仿真波形圖分析。 4.對比分析了FPGA和傳統(tǒng)的ASIC開發(fā)過程的區(qū)別以及優(yōu)缺點。
標簽: FPGA 以太網(wǎng)控制器
上傳時間: 2013-05-25
上傳用戶:changeboy
目前,數(shù)字信號處理廣泛應(yīng)用于通信、雷達、聲納、語音與圖像處理等領(lǐng)域,信號處理算法理論己趨于成熟,但其具體硬件實現(xiàn)方法卻值得探討。FPGA是近年來廣泛應(yīng)用的超大規(guī)模、超高速的可編程邏輯器件,由于其具有高集成度、高速、可編程等優(yōu)點,大大推動了數(shù)字系統(tǒng)設(shè)計的單片化、自動化,縮短了單片數(shù)字系統(tǒng)的設(shè)計周期、提高了設(shè)計的靈活性和可靠性,在超高速信號處理和實時測控方面有非常廣泛的應(yīng)用。本文對FPGA的數(shù)據(jù)采集與處理技術(shù)進行研究,基于FPGA在數(shù)據(jù)采樣控制和信號處理方面的高性能和單片系統(tǒng)發(fā)展的新熱點,把FPGA作為整個數(shù)據(jù)采集與處理系統(tǒng)的控制核心。主要研究內(nèi)容如下: FPGA的單片系統(tǒng)研究。針對數(shù)據(jù)采集與處理,對FPGA進行選型,設(shè)計了基于FPGA的單片系統(tǒng)的結(jié)構(gòu)。把整個控制系統(tǒng)分為三個部分:多通道采樣控制模塊,數(shù)據(jù)處理模塊,存儲控制模塊。 多通道采樣控制模塊的設(shè)計。利用4片AD7506和一片AD7862對64路模擬量進行周期采樣,分別設(shè)計了通道選擇控制模塊和A/D轉(zhuǎn)換控制模塊,并進行了仿真,完成了基于FPGA的多通道采樣控制。 數(shù)據(jù)處理模塊的設(shè)計。FFT算法在數(shù)字信號處理中占有重要的地位,因此本文研究了FFT的硬件實現(xiàn)結(jié)構(gòu),提出了用FPGA實現(xiàn)FFT的一種設(shè)計思想,給出了總體實現(xiàn)框圖。分別設(shè)計了旋轉(zhuǎn)因子復(fù)數(shù)乘法器,碟形運算單元,存儲器,控制器,并分別進行了仿真。重點設(shè)計實現(xiàn)了FFT算法中的蝶形處理單元,采用了一種高效乘法器算法設(shè)計實現(xiàn)了蝶形處理單元中的旋轉(zhuǎn)因子乘法器,從而提高了蝶形處理器的運算速度,降低了運算復(fù)雜度。理論分析和仿真結(jié)果表明,狀態(tài)機控制器成功地對各個模塊進行了有序、協(xié)調(diào)的控制。 存儲控制模塊的設(shè)計。利用閃存芯片K9K1G08UOA對采集處理后的數(shù)據(jù)進行存儲,設(shè)計了FPGA與閃存的硬件連接,設(shè)計了存儲控制模塊。 本文對FFT算法的硬件實現(xiàn)進行了研究,結(jié)合單片系統(tǒng)的特點,把整個系統(tǒng)分為多通道采樣控制模塊,數(shù)據(jù)處理模塊,存儲控制模塊進行設(shè)計和仿真。設(shè)計采用VHDL編寫程序的源代碼。仿真測試結(jié)果表明,此FPGA單片系統(tǒng)可完成對實時信號的高速采集與處理。
標簽: FPGA 數(shù)據(jù)采集 處理技術(shù)
上傳時間: 2013-04-24
上傳用戶:362279997
在國家重大科學(xué)工程HIRFL-CSR的CSR控制系統(tǒng)中,需要高速數(shù)據(jù)獲取和處理系統(tǒng)。該系統(tǒng)通常采用存儲器作為數(shù)據(jù)緩沖存儲。同步動態(tài)隨機存儲器SDRAM憑借其集成度高、功耗低、可靠性高、處理能力強等優(yōu)勢成為最佳選擇。但是SDRAM卻具有復(fù)雜的時序,為了降低成本,所以采用目前很為流行的EDA技術(shù),選擇可編程邏輯器件中廣泛使用的現(xiàn)場可編程門陣列FPGA,使用硬件描述語言VHDL,遵循先進的自頂向下的設(shè)計思想實現(xiàn)對SDRAM控制器的設(shè)計。 論文引言部分簡單介紹了CSR控制系統(tǒng),指出論文的課題來源與實際意義。第二章首先介紹了存儲器的概況與性能指標,其次較為詳細介紹了動態(tài)存儲器DRAM的基本時序,最后對同步動態(tài)隨機存儲器SDRAM進行詳盡論述,包括性能、特點、結(jié)構(gòu)以及最為重要的一些操作和時序。第三、四章分別論述本課題的SDRAM控制器硬件與軟件設(shè)計,重點介紹了具體芯片與FPGA設(shè)計技術(shù)。第五章為該SDRAM控制器在CsR控制系統(tǒng)中的一個經(jīng)典應(yīng)用,即同步事例處理器。最后對FPGA技術(shù)進行總結(jié)與展望。 本論文完整論述了控制器的設(shè)計原理和具體實現(xiàn)。從測試的結(jié)果來看,本控制器無論從結(jié)構(gòu)上,還是軟硬件上設(shè)計均滿足了工程實際要求。
上傳時間: 2013-07-19
上傳用戶:dct灬fdc
溫度是生活中最基本的環(huán)境參數(shù)。溫度的監(jiān)測與控制,對于生物生存生長,工業(yè)生產(chǎn)發(fā)展都有著非同一般的意義。溫度傳感器的應(yīng)用涉及機械制造、工業(yè)過程控制、汽車電子產(chǎn)品、消費電子產(chǎn)品和專用設(shè)備等各個領(lǐng)域。傳統(tǒng)的常用溫度傳感器有熱電偶、電阻溫度計RTD和NTC熱敏電阻等。但信號調(diào)理,模數(shù)轉(zhuǎn)換及恒溫器等功能全都會增加成本。現(xiàn)代集成溫度傳感器通常包含這些功能,并以其低廉的價格迅速地占據(jù)了市場。Dallas Semiconductor公司推出的數(shù)字式溫度傳感器DS1820采用數(shù)字化一線總線技術(shù)具有許多優(yōu)異特性。其一,它將控制線、地址線、數(shù)據(jù)線合為一根導(dǎo)線,允許在同一根導(dǎo)線上掛接多個控制對象,形成多點一線總線測控系統(tǒng)。布線施工方便,成本低廉。其二,線路上傳送的是數(shù)字信號,所受干擾和損耗小,性能好。本課題旨在分析和設(shè)計基于數(shù)字化一線總線技術(shù)的溫度測控系統(tǒng)。本系統(tǒng)采用FPGA實現(xiàn)一個溫度采集控制器,用于傳感器和上位機的連接,并采用Microsoft公司的Visual C++作為開發(fā)平臺,運用MSComm控件進行串口通信,進行命令的發(fā)送和接收。
上傳時間: 2013-04-24
上傳用戶:fyerd
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1