亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

開(kāi)關(guān)電源控制器

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。

    標簽: Floyd-Warshall Shortest Pairs Paths

    上傳時間: 2013-12-01

    上傳用戶:dyctj

  • RMQ問題是指:對于長度為n的數列A

    RMQ問題是指:對于長度為n的數列A,回答若干詢問RMQ(A,i,j)(i,j<=n),返回數列A中下標在[i,j]里的最小值下標。

    標簽: RMQ 長度 數列

    上傳時間: 2013-12-26

    上傳用戶:rocwangdp

  • 給定n個矩陣{A1,A2,…,An}

    給定n個矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2,…,n-1。考察這n個矩陣的連乘積A1A2…An。由于矩陣乘法滿足結合律,故計算矩陣的連乘積可以有許多不同的計算次序,這種計算次序可以用加括號的方式來確定。若一個矩陣連乘積的計算次序完全確定,則可以依此次序反復調用2個矩陣相乘的標準算法(有改進的方法,這里不考慮)計算出矩陣連乘積。若A是一個p×q矩陣,B是一個q×r矩陣,則計算其乘積C=AB的標準算法中,需要進行pqr次數乘。

    標簽: An 矩陣

    上傳時間: 2016-06-18

    上傳用戶:hjshhyy

  • K-MEANS算法 輸入:聚類個數k

    K-MEANS算法 輸入:聚類個數k,以及包含 n個數據對象的數據庫。 輸出:滿足方差最小標準的k個聚類。 處理流程: (1) 從 n個數據對象任意選擇 k 個對象作為初始聚類中心; (2) 循環(3)到(4)直到每個聚類不再發生變化為止 (3) 根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;并根據最小距離重新對相應對象進行劃分; (4) 重新計算每個(有變化)聚類的均值(中心對象)

    標簽: K-MEANS 算法 輸入 聚類

    上傳時間: 2013-12-20

    上傳用戶:chenjjer

  • MATLABR2007教程以及i習題和答案

    MATLABR2007教程以及i習題和答案,源碼等,很好是清華出版社的

    標簽: MATLABR 2007 教程

    上傳時間: 2017-03-20

    上傳用戶:Miyuki

  • 題目:加密軟件 要求:(1)輸入任意一段明文M

    題目:加密軟件 要求:(1)輸入任意一段明文M,以及密鑰K (2)根據一下公式將其轉換為密文C。 Ci = mi + K ,其中i = 0,1,……n-1 , K 為密鑰; (3)具有輸入輸出界面。

    標簽: 加密軟件 輸入

    上傳時間: 2013-11-25

    上傳用戶:shawvi

  • k個位子

    k個位子,n個元素填充,每個位置上數字可重復。例程為一簡潔的遞歸算法,顯示所有可能的組合

    標簽:

    上傳時間: 2017-09-01

    上傳用戶:181992417

  • 離散實驗 一個包的傳遞 用warshall

     實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); } 

    標簽: warshall 離散 實驗

    上傳時間: 2016-06-27

    上傳用戶:梁雪文以

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    標簽: 道理特分解法

    上傳時間: 2018-05-20

    上傳用戶:Aa123456789

  • 多元散射校正MSC

    function [R,k,b] = msc(A) % 多元散射校正 % 輸入待處理矩陣,通過多元散射校正,求得校正后的矩陣 %% 獲得矩陣行列數 [m,n] = size(A); %% 求平均光譜 M = mean(A,2); %% 利用最小二乘法求每一列的斜率k和截距b for i = 1:n a = polyfit(M,A(:,i),1); if i == 1 k = a(1); b = a(2); else k = [k,a(1)]; b = [b,a(2)]; end end %% 求得結果 for i = 1:n Ai = (A(:,i)-b(i))/k(i); if i == 1 R = Ai; else R = [R,Ai]; end end

    標簽: MSC 多元 散射 校正

    上傳時間: 2020-03-12

    上傳用戶:15275387185

主站蜘蛛池模板: 东阳市| 绥滨县| 三亚市| 翁源县| 武穴市| 林甸县| 咸丰县| 九寨沟县| 沽源县| 波密县| 明水县| 万荣县| 滦平县| 贺兰县| 永寿县| 黄石市| 邢台市| 兴隆县| 徐汇区| 保山市| 深水埗区| 固安县| 吴桥县| 阜康市| 安阳县| 汉源县| 惠安县| 温州市| 广州市| 昆山市| 松溪县| 广东省| 钟祥市| 建阳市| 西华县| 泾川县| 新田县| 阳东县| 扎鲁特旗| 灌南县| 方城县|