Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權(quán)可正可負(fù) 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結(jié)束:dis即為所有點(diǎn)對的最短路徑矩陣 3)算法小結(jié):此算法簡單有效,由于三重循環(huán)結(jié)構(gòu)緊湊,對于稠密圖,效率要高于執(zhí)行|V|次Dijkstra算法。時間復(fù)雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設(shè)成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍(lán)色部分,可以更直觀地得到I,j的連通情況。
標(biāo)簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
回溯算法解決n皇后問題,c++源碼,可以參考
標(biāo)簽: 回溯算法
上傳時間: 2016-05-04
上傳用戶:牛津鞋
RMQ問題是指:對于長度為n的數(shù)列A,回答若干詢問RMQ(A,i,j)(i,j<=n),返回數(shù)列A中下標(biāo)在[i,j]里的最小值下標(biāo)。
上傳時間: 2013-12-26
上傳用戶:rocwangdp
給定n個矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2,…,n-1。考察這n個矩陣的連乘積A1A2…An。由于矩陣乘法滿足結(jié)合律,故計算矩陣的連乘積可以有許多不同的計算次序,這種計算次序可以用加括號的方式來確定。若一個矩陣連乘積的計算次序完全確定,則可以依此次序反復(fù)調(diào)用2個矩陣相乘的標(biāo)準(zhǔn)算法(有改進(jìn)的方法,這里不考慮)計算出矩陣連乘積。若A是一個p×q矩陣,B是一個q×r矩陣,則計算其乘積C=AB的標(biāo)準(zhǔn)算法中,需要進(jìn)行pqr次數(shù)乘。
上傳時間: 2016-06-18
上傳用戶:hjshhyy
K-MEANS算法 輸入:聚類個數(shù)k,以及包含 n個數(shù)據(jù)對象的數(shù)據(jù)庫。 輸出:滿足方差最小標(biāo)準(zhǔn)的k個聚類。 處理流程: (1) 從 n個數(shù)據(jù)對象任意選擇 k 個對象作為初始聚類中心; (2) 循環(huán)(3)到(4)直到每個聚類不再發(fā)生變化為止 (3) 根據(jù)每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;并根據(jù)最小距離重新對相應(yīng)對象進(jìn)行劃分; (4) 重新計算每個(有變化)聚類的均值(中心對象)
上傳時間: 2013-12-20
上傳用戶:chenjjer
MATLABR2007教程以及i習(xí)題和答案,源碼等,很好是清華出版社的
上傳時間: 2017-03-20
上傳用戶:Miyuki
題目:加密軟件 要求:(1)輸入任意一段明文M,以及密鑰K (2)根據(jù)一下公式將其轉(zhuǎn)換為密文C。 Ci = mi + K ,其中i = 0,1,……n-1 , K 為密鑰; (3)具有輸入輸出界面。
上傳時間: 2013-11-25
上傳用戶:shawvi
learningMatlab PhÇ n 1 c¬ së Mat lab Ch ¬ ng 1: Cµ i ® Æ t matlab 1.1.Cµ i ® Æ t ch ¬ ng tr×nh: Qui tr×nh cµ i ® Æ t Matlab còng t ¬ ng tù nh viÖ c cµ i ® Æ t c¸ c ch ¬ ng tr×nh phÇ n mÒ m kh¸ c, chØ cÇ n theo c¸ c h íng dÉ n vµ bæ xung thª m c¸ c th« ng sè cho phï hî p. 1.1.1 Khë i ® éng windows. 1.1.2 Do ch ¬ ng tr×nh ® î c cÊ u h×nh theo Autorun nª n khi g¾ n dÜ a CD vµ o æ ® Ü a th× ch ¬ ng tr×nh tù ho¹ t ® éng, cö a sæ
標(biāo)簽: learningMatlab 172 199 173
上傳時間: 2013-12-20
上傳用戶:lanwei
k個位子,n個元素填充,每個位置上數(shù)字可重復(fù)。例程為一簡潔的遞歸算法,顯示所有可能的組合
標(biāo)簽:
上傳時間: 2017-09-01
上傳用戶:181992417
實(shí)驗(yàn)源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關(guān)系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關(guān)系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數(shù) i: "); scanf("%d",&k); 四川大學(xué)實(shí)驗(yàn)報告 printf("請輸入矩陣的列數(shù) j: "); scanf("%d",&n); warshall(k,n); }
標(biāo)簽: warshall 離散 實(shí)驗(yàn)
上傳時間: 2016-06-27
上傳用戶:梁雪文以
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1