借助AD9981,利用一種雙芯片“乒乓”配置可以實現(xiàn)超過110 MHz的像素時鐘速率。雙芯片解決方案與交替像素采樣解決方案的不同之處在于,前者可以維持全速刷新率。雙通道AD9981設計有多種實現(xiàn)方式。本應用筆記旨在讓用戶了解在實現(xiàn)這種配置時需要考慮的因素。相關變量包括布局和路由限制、時鐘選擇、圖形控制要求和最高速率要求等。
上傳時間: 2013-10-11
上傳用戶:shinesyh
借助AD9884A,利用一種雙芯片“乒乓”配置可以實現(xiàn)超過140 MHz的像素時鐘速率。雙芯片解決方案與交替像素采樣解決方案的不同之處在于,前者可以維持全速刷新率。雙通道AD9884A設計有多種實現(xiàn)方式。本應用筆記旨在讓用戶了解在實現(xiàn)這種乒乓配置時需要考慮的因素。相關變量包括布局和路由限制、時鐘選擇、圖形控制要求和最高速率要求等。
上傳時間: 2013-10-28
上傳用戶:448949
為了提高數(shù)字集成電路芯片的驅動能力,采用優(yōu)化比例因子的等比緩沖器鏈方法,通過Hspice軟件仿真和版圖設計測試,提出了一種基于CSMC 2P2M 0.6 μm CMOS工藝的輸出緩沖電路設計方案。本文完成了系統(tǒng)的電原理圖設計和版圖設計,整體電路采用Hspice和CSMC 2P2M 的0.6 μm CMOS工藝的工藝庫(06mixddct02v24)仿真,基于CSMC 2P2M 0.6 μm CMOS工藝完成版圖設計,并在一款多功能數(shù)字芯片上使用,版圖面積為1 mm×1 mm,并參與MPW(多項目晶圓)計劃流片,流片測試結果表明,在輸出負載很大時,本設計能提供足夠的驅動電流,同時延遲時間短、并占用版圖面積小。
上傳時間: 2013-10-09
上傳用戶:小鵬
結合直接數(shù)字頻率合成(DDS)和鎖相環(huán)(PLL)技術完成了X波段低相噪本振跳頻源的設計。文章通過軟件仿真重點分析了本振跳頻源的低相噪設計方法,同時給出了主要的硬件選擇和詳細電路設計過程。最后對樣機的測試結果表明,本方案具有相位噪聲低、頻率控制靈活等優(yōu)點,滿足了實際工程應用。
上傳時間: 2013-11-12
上傳用戶:jiwy
用ad9850激勵的鎖相環(huán)頻率合成器山東省濟南市M0P44 部隊Q04::00R 司朝良摘要! 提出了一種ad9850和ad9850相結合的頻率合成方案! 介紹了ad9850芯片ad9850的基本工作原理" 性能特點及引腳功能! 給出了以1!2345 作為參考信號源的鎖相環(huán)頻率合成器實例! 并對該頻率合成器的硬件電路和軟件編程進行了簡要說明#關鍵詞! !!" 鎖相環(huán)頻率合成器數(shù)據(jù)寄存器
上傳時間: 2013-10-18
上傳用戶:hehuaiyu
現(xiàn)代的電子設計和芯片制造技術正在飛速發(fā)展,電子產(chǎn)品的復雜度、時鐘和總線頻率等等都呈快速上升趨勢,但系統(tǒng)的電壓卻不斷在減小,所有的這一切加上產(chǎn)品投放市場的時間要求給設計師帶來了前所未有的巨大壓力。要想保證產(chǎn)品的一次性成功就必須能預見設計中可能出現(xiàn)的各種問題,并及時給出合理的解決方案,對于高速的數(shù)字電路來說,最令人頭大的莫過于如何確保瞬時跳變的數(shù)字信號通過較長的一段傳輸線,還能完整地被接收,并保證良好的電磁兼容性,這就是目前頗受關注的信號完整性(SI)問題。本章就是圍繞信號完整性的問題,讓大家對高速電路有個基本的認識,并介紹一些相關的基本概念。 第一章 高速數(shù)字電路概述.....................................................................................51.1 何為高速電路...............................................................................................51.2 高速帶來的問題及設計流程剖析...............................................................61.3 相關的一些基本概念...................................................................................8第二章 傳輸線理論...............................................................................................122.1 分布式系統(tǒng)和集總電路.............................................................................122.2 傳輸線的RLCG 模型和電報方程...............................................................132.3 傳輸線的特征阻抗.....................................................................................142.3.1 特性阻抗的本質.................................................................................142.3.2 特征阻抗相關計算.............................................................................152.3.3 特性阻抗對信號完整性的影響.........................................................172.4 傳輸線電報方程及推導.............................................................................182.5 趨膚效應和集束效應.................................................................................232.6 信號的反射.................................................................................................252.6.1 反射機理和電報方程.........................................................................252.6.2 反射導致信號的失真問題.................................................................302.6.2.1 過沖和下沖.....................................................................................302.6.2.2 振蕩:.............................................................................................312.6.3 反射的抑制和匹配.............................................................................342.6.3.1 串行匹配.........................................................................................352.6.3.1 并行匹配.........................................................................................362.6.3.3 差分線的匹配.................................................................................392.6.3.4 多負載的匹配.................................................................................41第三章 串擾的分析...............................................................................................423.1 串擾的基本概念.........................................................................................423.2 前向串擾和后向串擾.................................................................................433.3 后向串擾的反射.........................................................................................463.4 后向串擾的飽和.........................................................................................463.5 共模和差模電流對串擾的影響.................................................................483.6 連接器的串擾問題.....................................................................................513.7 串擾的具體計算.........................................................................................543.8 避免串擾的措施.........................................................................................57第四章 EMI 抑制....................................................................................................604.1 EMI/EMC 的基本概念..................................................................................604.2 EMI 的產(chǎn)生..................................................................................................614.2.1 電壓瞬變.............................................................................................614.2.2 信號的回流.........................................................................................624.2.3 共模和差摸EMI ..................................................................................634.3 EMI 的控制..................................................................................................654.3.1 屏蔽.....................................................................................................654.3.1.1 電場屏蔽.........................................................................................654.3.1.2 磁場屏蔽.........................................................................................674.3.1.3 電磁場屏蔽.....................................................................................674.3.1.4 電磁屏蔽體和屏蔽效率.................................................................684.3.2 濾波.....................................................................................................714.3.2.1 去耦電容.........................................................................................714.3.2.3 磁性元件.........................................................................................734.3.3 接地.....................................................................................................744.4 PCB 設計中的EMI.......................................................................................754.4.1 傳輸線RLC 參數(shù)和EMI ........................................................................764.4.2 疊層設計抑制EMI ..............................................................................774.4.3 電容和接地過孔對回流的作用.........................................................784.4.4 布局和走線規(guī)則.................................................................................79第五章 電源完整性理論基礎...............................................................................825.1 電源噪聲的起因及危害.............................................................................825.2 電源阻抗設計.............................................................................................855.3 同步開關噪聲分析.....................................................................................875.3.1 芯片內部開關噪聲.............................................................................885.3.2 芯片外部開關噪聲.............................................................................895.3.3 等效電感衡量SSN ..............................................................................905.4 旁路電容的特性和應用.............................................................................925.4.1 電容的頻率特性.................................................................................935.4.3 電容的介質和封裝影響.....................................................................955.4.3 電容并聯(lián)特性及反諧振.....................................................................955.4.4 如何選擇電容.....................................................................................975.4.5 電容的擺放及Layout ........................................................................99第六章 系統(tǒng)時序.................................................................................................1006.1 普通時序系統(tǒng)...........................................................................................1006.1.1 時序參數(shù)的確定...............................................................................1016.1.2 時序約束條件...................................................................................1066.2 源同步時序系統(tǒng).......................................................................................1086.2.1 源同步系統(tǒng)的基本結構...................................................................1096.2.2 源同步時序要求...............................................................................110第七章 IBIS 模型................................................................................................1137.1 IBIS 模型的由來...................................................................................... 1137.2 IBIS 與SPICE 的比較.............................................................................. 1137.3 IBIS 模型的構成...................................................................................... 1157.4 建立IBIS 模型......................................................................................... 1187.4 使用IBIS 模型......................................................................................... 1197.5 IBIS 相關工具及鏈接..............................................................................120第八章 高速設計理論在實際中的運用.............................................................1228.1 疊層設計方案...........................................................................................1228.2 過孔對信號傳輸?shù)挠绊?..........................................................................1278.3 一般布局規(guī)則...........................................................................................1298.4 接地技術...................................................................................................1308.5 PCB 走線策略............................................................................................134
標簽: 信號完整性
上傳時間: 2014-05-15
上傳用戶:dudu1210004
根據(jù)汽車發(fā)動機控制芯片的工作環(huán)境,針對常見的溫度失效問題,提出了一種應用在發(fā)動機控制芯片中的帶隙基準電壓源電路。該電路采用0.18 μm CMOS工藝,采用電流型帶隙基準電壓源結構,具有適應低電源電壓、電源抑制比高的特點。同時還提出一種使用不同溫度系數(shù)的電阻進行高階補償?shù)姆椒ǎ瑢崿F(xiàn)了較寬溫度范圍內的低溫度系數(shù)。仿真結果表明,該帶隙基準電路在-50℃~+125℃的溫度范圍內,實現(xiàn)平均輸出電壓誤差僅5.2 ppm/℃,可用于要求極端嚴格的發(fā)動機溫度環(huán)境。該電路電源共模抑制比最大為99 dB,可以有效緩解由發(fā)動機在不同工況下產(chǎn)生的電源紋波對輸出參考電壓的影響。
上傳時間: 2014-01-09
上傳用戶:ecooo
計一種基于Howland電流源電路的精密壓控電流源,論述了該精密壓控電流源的原理。該電路以V/I轉換電路作為核心,Howland電流源做為誤差補償電路,進一步提高了電流源的精度,使絕對誤差仿真值達到nA級,實際電路測量值絕對誤差達到?滋A級,得到高精度的壓控電流源。仿真和實驗測試均證明該方案是可行的。
上傳時間: 2014-12-24
上傳用戶:sklzzy
首先對逆變器無線并聯(lián)的原理作了簡單的介紹。其次依據(jù)逆變器技術指標設計了一種以dsPIC30F3011芯片為核心控制器的無線并聯(lián)控制方案,結合系統(tǒng)主電路和相關控制原理,給出了該系統(tǒng)的硬件設計和軟件設計。最后以兩臺逆變器并聯(lián)為研究對象進行實驗驗證,實驗結果表明該控制方案能夠達到技術指標的要求并且能夠有效地抑制并聯(lián)系統(tǒng)產(chǎn)生的環(huán)流,使輸出功率和負載電流得到均分。
標簽: 逆變器 無線 并聯(lián)控制 方案
上傳時間: 2013-11-20
上傳用戶:CSUSheep
CX8505是一款單芯片同步降壓穩(wěn)壓器,在輸入電壓范圍內可以持續(xù)提供3A的負載電流,具有軟啟動,低壓保護,過流保護、過溫保護等功能,待機模式下僅為0.03毫安 最具高性價比的車載充電器方案
上傳時間: 2013-11-22
上傳用戶:zhuyibin