自適應(yīng)濾波器的硬件實現(xiàn)一直是自適應(yīng)信號處理領(lǐng)域研究的熱點。隨著電子技術(shù)的發(fā)展,數(shù)字系統(tǒng)功能越來越強大,對器件的響應(yīng)速度也提出更高的要求。 本文針對用通用DSP 芯片實現(xiàn)的自適應(yīng)濾波器處理速度低和用HDL語言編寫底層代碼用FPGA實現(xiàn)的自適應(yīng)濾波器開發(fā)效率低的缺點,提出了一種基于DSP Builder系統(tǒng)建模的設(shè)計方法。以隨機2FSK信號作為研究對象,首先在matlab上編寫了LMS去噪自適應(yīng)濾波器的點M文件,改變自適應(yīng)參數(shù),進行了一系列的仿真,對算法迭代步長、濾波器的階數(shù)與收斂速度和濾波精度進行了研究,得出了最佳自適應(yīng)參數(shù),即迭代步長μ=0.0057,濾波器階數(shù)m=8,為硬件實現(xiàn)提供了參考。 然后,利用最新DSP Builder工具建立了基于LMS算法的8階2FSK信號去噪自適應(yīng)濾波器的模型,結(jié)合多種EDA工具,在EPFlOKl00EQC208-1器件上設(shè)計出了最高數(shù)據(jù)處理速度為36.63MHz的8階LMS自適應(yīng)濾波器,其速度是文獻[3]通過編寫底層VHDL代碼設(shè)計的8階自適應(yīng)濾波器數(shù)據(jù)處理速度7倍多,是文獻[50]采用DSP通用處理器TMS320C54X設(shè)計的8階自適應(yīng)濾波器處理速度25倍多,開發(fā)效率和器件性能都得到了大大地提高,這種全新的設(shè)計理念與設(shè)計方法是EDA技術(shù)的前沿與發(fā)展方向。 最后,采用異步FIFO技術(shù),設(shè)計了高速采樣自適應(yīng)濾波系統(tǒng),完成了對雙通道AD器件AD9238與自適應(yīng)濾波器的高速匹配控制,在QuartusⅡ上進行了仿真,給出了系統(tǒng)硬件實現(xiàn)的原理框圖,并將采樣濾波控制器與異步FIF0集成到同一芯片上,既能有效降低高頻可能引起的干擾又降低了系統(tǒng)的成本。
標(biāo)簽: FPGA 高速采樣 自適應(yīng)濾波
上傳時間: 2013-06-01
上傳用戶:ynwbosss
本課題完成了基于FPGA的數(shù)據(jù)采集器以及IIC總線的模數(shù)轉(zhuǎn)換器部分、通訊部分的電路設(shè)計。其中FPGA采用Xilinx公司Spartan-Ⅱ系列的XC2S100芯片,在芯片中嵌入32位軟處理器MicroBlaze;ⅡC總線的模數(shù)轉(zhuǎn)換采用Microchip公司的MCP3221芯片,通訊部分則在FPGA片內(nèi)用VHDL語言實現(xiàn)。通過上述設(shè)計實現(xiàn)了“準(zhǔn)單片化”的模擬量和數(shù)字量的數(shù)據(jù)采集和處理。 所設(shè)計的數(shù)據(jù)采集器可以和結(jié)構(gòu)類似的上位機通訊,本課題完成了在上位機中用VHDL語言實現(xiàn)的通信電路模塊。通過上述兩部分工作,將微處理器、數(shù)據(jù)存儲器、程序存儲器等數(shù)字邏輯電路均集成在同一個FPGA內(nèi)部,形成一個可編程的片上系統(tǒng)。FPGA片外僅為模擬器件和開關(guān)量驅(qū)動芯片。FPGA內(nèi)部的硬件電路采用VHDL語言編寫;MCU軟核工作所需要的程序采用C語言編寫。多臺數(shù)據(jù)采集器與服務(wù)器構(gòu)成數(shù)據(jù)采集系統(tǒng)。服務(wù)器端軟件用VB開發(fā),既可以將實時采集的數(shù)據(jù)以數(shù)字方式顯示,也可以用更加直觀的曲線方式顯示。 由于數(shù)據(jù)采集器是所有自控類系統(tǒng)所必需的電路模塊,所以一個通用的片上系統(tǒng)設(shè)計可以解決各類系統(tǒng)的應(yīng)用問題,達到“設(shè)計復(fù)用”(DesignReuse)的目的。采用基于FPGA的SOPC設(shè)計的更加突出的優(yōu)點是不必更換芯片就可以實現(xiàn)設(shè)計的改進和升級,同時也可以降低成本和提高可靠性。
標(biāo)簽: FPGA SOPC 數(shù)據(jù)采集系統(tǒng)
上傳時間: 2013-07-12
上傳用戶:a155166
隨著ASIC設(shè)計規(guī)模的增長,功能驗證已成為整個開發(fā)周期的瓶頸。傳統(tǒng)的基于軟件模擬和硬件仿真的邏輯驗證方法已難以滿足應(yīng)用的要求,基于FPGA組的原型驗證方法能有效縮短系統(tǒng)的開發(fā)周期,可提供更快更全面的驗證。由于FPGA芯片容量的增加跟不上ASIC設(shè)計規(guī)模的增長,單芯片已無法容納整個設(shè)計,所以常常需要對設(shè)計進行邏輯分割,將子邏輯塊映射到FPGA陣列中。 本文對邏輯驗證系統(tǒng)的可配置互連結(jié)構(gòu)和ASIC邏輯分割算法進行了深入的研究,提出了FPGA陣列的非對稱可配置互連結(jié)構(gòu)。與現(xiàn)有的對稱互連結(jié)構(gòu)相比,該結(jié)構(gòu)能提供更多的互連通道,可實現(xiàn)對I/O數(shù)量、電平類型和互連路徑的靈活配置。 本文對邏輯分割算法進行了較深入的研究。針對現(xiàn)有的兩類分割算法存在的不足,提出并實現(xiàn)了基于設(shè)計模塊的邏輯分割算法,該算法有三個重要特征:1)基于設(shè)計代碼;2)以模塊作為邏輯分割的最小單位;3)使用模塊資源信息指導(dǎo)邏輯分割過程,避免了設(shè)計分割過程的盲目性,簡化了邏輯分割過程。 本文還對并行邏輯分割方法進行了研究,提出了兩種基于不同任務(wù)分配策略的并行分割算法,并對其進行了模擬和性能分析;驗證了采用并行方案對ASIC邏輯進行分割和映射的可行性。 最后基于改進的芯片互連結(jié)構(gòu),使用原型系統(tǒng)驗證方法對某一大規(guī)模ASIC設(shè)計進行了邏輯分割和功能驗證。實驗結(jié)果表明,使用改進后的FPGA陣列互連結(jié)構(gòu)可以更方便和快捷地實現(xiàn)ASIC設(shè)計的分割和驗證,不但能顯著提高芯片間互連路徑的利用率,而且能給邏輯分割乃至整個驗證過程提供更好的支持,滿足現(xiàn)在和將來大規(guī)模ASIC邏輯驗證的需求。
標(biāo)簽: FPGA ASIC 邏輯 驗證技術(shù)
上傳時間: 2013-06-12
上傳用戶:極客
隨著國民經(jīng)濟的飛速發(fā)展,傳統(tǒng)的電機已無法滿足當(dāng)前工程的要求,其作用也由過去簡單的起停控制、提供動力上升到要求對其速度、位置、轉(zhuǎn)矩等進行精確的控制,并能實現(xiàn)快速加速、減速、反轉(zhuǎn)以及準(zhǔn)確停止等,使被驅(qū)動的機械運動符合于集的要求。在集成電路、現(xiàn)代電子技術(shù)及控制理論飛速發(fā)展的今天,電機控制技術(shù)也得到了飛快的發(fā)展,電機控制器也由模擬分立元件構(gòu)成的電路向數(shù)模混合、全數(shù)字方向發(fā)展。本論文主要研究了FPGA芯片在電機控制器中的應(yīng)用。 論文首先對無刷直流電機系統(tǒng)進行了綜合性論述。對系統(tǒng)的組成、及系統(tǒng)中主要部分:如位置傳感器、逆變器和功率器件、供電直流電源進行了較詳細的說明;并且提出了與本研究相關(guān)的控制機理和實施方案。 其次,論文對FPGA芯片的特點及配置電路、以及以FPGA-FLEX10K10為核心的控制器電路的組成進行了較詳細的論述;同時對超高速集成電路硬件描述語言(VHDL)的特點和應(yīng)用進行了研究;并提出了應(yīng)用FPGA芯片對電機速度進行控制的系統(tǒng)構(gòu)成及工作原理。 論文還對FPGA芯片與DSP芯片共同完成電機控制的方案進行了論述,利用ALTERA公司的FPGA芯片完成了電機控制器的設(shè)計、制造和調(diào)試,并在此基礎(chǔ)上分析研究了利用此控制器對無刷直流電機進行調(diào)速控制的方法;兩種控制器共同工作,組合方便、功能強大,適合在高精度、高效、寬變速控制的應(yīng)用場合下,可對電機實現(xiàn)精度更高、策略更復(fù)雜的控制。 論文最后還對在具體產(chǎn)品中的應(yīng)用效果及行了簡單分析。
標(biāo)簽: FPGA 電機控制器 中的應(yīng)用
上傳時間: 2013-08-04
上傳用戶:小鵬
模糊控制是智能控制的重要組成部分,它能對那些不能建立精確數(shù)學(xué)模型的場合進行有效的控制;近年來,F(xiàn)PGA及EDA技術(shù)發(fā)展迅速。本論文就是要結(jié)合這兩種先進技術(shù),在一塊FPGA芯片上實現(xiàn)一個雙輸入單輸出的模糊控制器,并嘗試將ADC和DAC集成在該芯片中,以簡化系統(tǒng)設(shè)計。 首先闡述了模糊控制的理論基礎(chǔ),重點介紹了雙輸入單輸出的模糊控制算法;然后在簡單介紹FPGA結(jié)構(gòu)和VHDL語言的基礎(chǔ)上,采用自項向下的設(shè)計方法,應(yīng)用主流EDA工具進行模糊控制各模塊的設(shè)計,并對每個模塊進行仿真;最后將各模塊組成一完整的模糊控制器,在EDA工具上進行仿真驗證和編程下載,并用一個溫度控制實驗驗證了控制器的功能,證明該控制器滿足一般控制應(yīng)用的要求。 本論文是以VHDL和FPGA為代表的現(xiàn)代數(shù)字系統(tǒng)設(shè)計技術(shù)在智能控制領(lǐng)域應(yīng)用的一個嘗試,拓寬了模糊控制器的實現(xiàn)形式,相比于傳統(tǒng)的以單片機為載體的模糊控制器,在系統(tǒng)的簡單性、實時性和經(jīng)濟性方面都有顯著的增強,是一種值得采用的方法。 由于在算法的處理上采取了一定的簡化,所以損失了一定的精度。今后可以在算法上進行完善,設(shè)計出高精度的模糊控制器。
上傳時間: 2013-06-07
上傳用戶:haoxiyizhong
工業(yè)X-CT(X-ray Computed Tomography)無損檢測技術(shù)是以不損傷或者破壞被檢測對象的一種高新檢測技術(shù),被譽為最佳的無損檢測手段,在無損檢測領(lǐng)域日益受到人們的青睞。近年來,各國都在投入大量的人力、物力對其進行研究與開發(fā)。 目前,工業(yè)CT主要采用第二代和第三代掃描方式。在工業(yè)CT第三代掃描方式中,掃描系統(tǒng)僅作“旋轉(zhuǎn)”運動,控制系統(tǒng)比較簡單。對此,我國已取得了可喜的成績。然而,對工業(yè)CT系統(tǒng)中的二代掃描運動控制系統(tǒng),即針對“平移+旋轉(zhuǎn)”運動的控制系統(tǒng)的研究,我國已有采用,但與發(fā)達國家相比,還存在較大的差距。二代掃描方式與其它掃描方式相比,具有對被檢物的尺寸沒有要求,且能夠?qū)Ω信d趣的檢測區(qū)域進行局部掃描的獨特優(yōu)點。同時X光源的射線出束角較小(一般小于20°),因此在工業(yè)X-CT系統(tǒng)主要采用二代掃描運動控制。有鑒于此,本論文結(jié)合有關(guān)科研項目,開展了工業(yè)X-CT二代掃描控制系統(tǒng)的研究。 論文首先介紹了工業(yè)X-CT系統(tǒng)的工作原理和各種掃描運動控制方式的特點,闡述了開展二代掃描控制的研究目的和意義。其次,根據(jù)二代掃描控制的特點,提出了“在優(yōu)先滿足工業(yè)X-CT二代掃描控制的基礎(chǔ)上,力求實現(xiàn)對工業(yè)X-CT掃描運動的通用控制,使其能同時支持一、三代掃描方式”的設(shè)計思想。據(jù)此,研究確立了基于單片機AT89LV52及FPGA芯片EP1C3T100C8的運動控制架構(gòu),以實現(xiàn)二代掃描控制系統(tǒng)的設(shè)計方案。論文詳細介紹了可編程邏輯器件FPGA的工作原理和開發(fā)流程,并對其相關(guān)開發(fā)環(huán)境QuartusII4.1作了闡述。結(jié)合運動控制系統(tǒng)的硬件設(shè)計,詳細介紹了各功能模塊的具體設(shè)計過程,給出了相關(guān)的設(shè)計原理框圖和實際運行波形。并制作了相應(yīng)的PCB板,調(diào)試了整個硬件控制系統(tǒng)。最后,論文還詳細研究了利用VisualC++6.0來完成上位機控制軟件的設(shè)計,給出了運動控制主界面及掃描運動控制功能軟件設(shè)計的流程圖。 論文對整個運動控制系統(tǒng)采用的經(jīng)濟型的開環(huán)控制技術(shù)所帶來的不利影響,分析研究了增加步進電機的細分數(shù)以提高掃描精度的可能性,并對所研究的控制系統(tǒng)在調(diào)試過程中出現(xiàn)的一些問題及解決方案作了簡要的分析,提出了一些完善方法。
標(biāo)簽: FPGA X-CT 工業(yè) 掃描控制
上傳時間: 2013-04-24
上傳用戶:stella2015
當(dāng)前,在系統(tǒng)級互連設(shè)計中高速串行I/O技術(shù)迅速取代傳統(tǒng)的并行I/O技術(shù)正成為業(yè)界趨勢。人們已經(jīng)意識到串行I/O“潮流”是不可避免的,因為在高于1Gbps的速度下,并行I/O方案已經(jīng)達到了物理極限,不能再提供可靠和經(jīng)濟的信號同步方法。基于串行I/O的設(shè)計帶來許多傳統(tǒng)并行方法所無法提供的優(yōu)點,包括:更少的器件引腳、更低的電路板空間要求、減少印刷電路板(PCB)層數(shù)、PCB布局布線更容易、接頭更小、EMI更少,而且抵抗噪聲的能力也更好。高速串行I/O技術(shù)正被越來越廣泛地應(yīng)用于各種系統(tǒng)設(shè)計中,包括PC、消費電子、海量存儲、服務(wù)器、通信網(wǎng)絡(luò)、工業(yè)計算和控制、測試設(shè)備等。迄今業(yè)界已經(jīng)發(fā)展出了多種串行系統(tǒng)接口標(biāo)準(zhǔn),如PCI Express、串行RapidIO、InfiniBand、千兆以太網(wǎng)、10G以太網(wǎng)XAUI、串行ATA等等。 Aurora協(xié)議是為私有上層協(xié)議或標(biāo)準(zhǔn)上層協(xié)議提供透明接口的串行互連協(xié)議,它允許任何數(shù)據(jù)分組通過Aurora協(xié)議封裝并在芯片間、電路板間甚至機箱間傳輸。Aurora鏈路層協(xié)議在物理層采用千兆位串行技術(shù),每物理通道的傳輸波特率可從622Mbps擴展到3.125Gbps。Aurora還可將1至16個物理通道綁定在一起形成一個虛擬鏈路。16個通道綁定而成的虛擬鏈路可提供50Gbps的傳輸波特率和最大40Gbps的全雙工數(shù)據(jù)傳輸速率。Aurora可優(yōu)化支持范圍廣泛的應(yīng)用,如太位級路由器和交換機、遠程接入交換機、HDTV廣播系統(tǒng)、分布式服務(wù)器和存儲子系統(tǒng)等需要極高數(shù)據(jù)傳輸速率的應(yīng)用。 傳統(tǒng)的標(biāo)準(zhǔn)背板如VME總線和CompactPCI總線都是采用并行總線方式。然而對帶寬需求的不斷增加使新興的高速串行總線背板正在逐漸取代傳統(tǒng)的并行總線背板。現(xiàn)在,高速串行背板速率普遍從622Mbps到3.125Gbps,甚至超過10Gbps。AdvancedTCA(先進電信計算架構(gòu))正是在這種背景下作為新一代的標(biāo)準(zhǔn)背板平臺被提出并得到快速的發(fā)展。它由PCI工業(yè)計算機制造商協(xié)會(PICMG)開發(fā),其主要目的是定義一種開放的通信和計算架構(gòu),使它們能被方便而迅速地集成,滿足高性能系統(tǒng)業(yè)務(wù)的要求。ATCA作為標(biāo)準(zhǔn)串行總線結(jié)構(gòu),支持高速互聯(lián)、不同背板拓撲、高信號密度、標(biāo)準(zhǔn)機械與電氣特性、足夠步線長度等特性,滿足當(dāng)前和未來高系統(tǒng)帶寬的要求。 采用FPGA設(shè)計高速串行接口將為設(shè)計帶來巨大的靈活性和可擴展能力。Xilinx Virtex-IIPro系列FPGA芯片內(nèi)置了最多24個RocketIO收發(fā)器,提供從622Mbps到3.125Gbps的數(shù)據(jù)速率并支持所有新興的高速串行I/O接口標(biāo)準(zhǔn)。結(jié)合其強大的邏輯處理能力、豐富的IP核心支持和內(nèi)置PowerPC處理器,為企業(yè)從并行連接向串行連接的過渡提供了一個理想的連接平臺。 本文論述了采用Xilinx Virtex-IIPro FPGA設(shè)計傳輸速率為2.5Gbps的高速串行背板接口,該背板接口完全符合PICMG3.0規(guī)范。本文對串行高速通道技術(shù)的發(fā)展背景、現(xiàn)狀及應(yīng)用進行了簡要的介紹和分析,詳細分析了所涉及到的主要技術(shù)包括線路編解碼、控制字符、逗點檢測、擾碼、時鐘校正、通道綁定、預(yù)加重等。同時對AdvancedTCA規(guī)范以及Aurora鏈路層協(xié)議進行了分析, 并在此基礎(chǔ)上給出了FPGA的設(shè)計方法。最后介紹了基于Virtex-IIPro FPGA的ATCA接口板和MultiBERT設(shè)計工具,可在標(biāo)準(zhǔn)ATCA機框內(nèi)完成單通道速率為2.5Gbps的全網(wǎng)格互聯(lián)。
上傳時間: 2013-05-29
上傳用戶:frank1234
本文提出了一種基于FPGA的細胞圖像識別系統(tǒng)方案,該系統(tǒng)中FPGA處于核心地位,F(xiàn)PGA采用Altera公司的EP1K100QC208-1芯片,構(gòu)造專用處理功能,實現(xiàn)彩色圖像灰度化、灰度變換、中值濾波、低通濾波、灰度圖像二值化等算法。這部分處理的數(shù)據(jù)量非常大,由于采用FPGA處理,產(chǎn)生的時延變得很小;最后系統(tǒng)機進行識別處理的是二值圖像,數(shù)據(jù)量也很小。所進行的仿真實驗取得了良好的效果,給出了部分源代碼和實驗結(jié)果。設(shè)計采用VHDL語言描述,并使用電子設(shè)計自動化(EDA)工具進行了模擬和驗證。
標(biāo)簽: FPGA 圖像識別 預(yù)處理 硬件
上傳時間: 2013-04-24
上傳用戶:xwd2010
相對于JPEG中二維離散余弦變換(2DDCT)來說,在JPEG2000標(biāo)準(zhǔn)中,二維離散小波變換(2DDWT)是其圖像壓縮系統(tǒng)的核心變換。在很多需要進行實時處理圖像的系統(tǒng)中,如數(shù)碼相機、遙感遙測、衛(wèi)星通信、多媒體通信、便攜式攝像機、移動通信等系統(tǒng),需要用芯片實現(xiàn)圖像的編解碼壓縮過程。雖然有許多研究工作者對圖像處理的小波變換進行了研究,但大都只偏重算法研究,對算法硬件實現(xiàn)時的復(fù)雜性考慮較少,對圖像處理的小波變換硬件實現(xiàn)的研究也較少。 本文針對圖像處理的小波變換算法及其硬件實現(xiàn)進行了研究。對文獻[13]提出的“內(nèi)嵌延拓提升小波變換”(Combiningthedata-extensionprocedureintothelifting-basedDWTcore)快速算法進行仔細分析,提出一種基于提升方式的5/3小波變換適合硬件實現(xiàn)的算法,在MATLAB中仿真驗證了該算法,證明其是正確的。并設(shè)計了該算法的硬件結(jié)構(gòu),在MATLAT的Simulink中進行仿真,對該結(jié)構(gòu)進行VHDL語言的寄存器傳輸級(RTL)描述與仿真,成功綜合到Altera公司的FPGA器件中進行驗證通過。本算法與傳統(tǒng)的小波變換的邊界處理方法比較:由于將其邊界延拓過程內(nèi)嵌于小波變換模塊中,使該硬件結(jié)構(gòu)無需額外的邊界延拓過程,減少小波變換過程中對內(nèi)存的讀寫量,從而達到減少內(nèi)存使用量,降低功耗,提高硬件利用率和運算速度的特點。本算法與文獻[13]提出的算法相比較:無需增加額外的硬件計算模塊,又具有在硬件實現(xiàn)時不改變原來的提升小波算法的規(guī)則性結(jié)構(gòu)的特點。這種小波變換硬件芯片的實現(xiàn)不僅適用于JPEG2000的5/3無損小波變換,當(dāng)然也可用于其它各種實時圖像壓縮處理硬件系統(tǒng)。
上傳時間: 2013-06-13
上傳用戶:jhksyghr
逆變控制器的發(fā)展經(jīng)歷從分立元件的模擬電路到以專用微處理芯片(DSP/MCU)為核心的電路系統(tǒng),并從數(shù)模混合電路過渡到純數(shù)字控制的歷程。但是,通用微處理芯片是為一般目的而設(shè)計,存在一定局限。為此,近幾年來逆變器專用控制芯片(ASIC)實現(xiàn)技術(shù)的研究越來越受到關(guān)注,已成為逆變控制器發(fā)展的新方向之一。本文利用一個成熟的單相電壓型PWM逆變器控制模型,圍繞逆變器專用控制芯片ASIC的實現(xiàn)技術(shù),依次對專用芯片的系統(tǒng)功能劃分,硬件算法,全系統(tǒng)的硬件設(shè)計及優(yōu)化,流水線操作和并行化,芯片運行穩(wěn)定性等問題進行了初步研究。首先引述了單相電壓型PWM逆變器連續(xù)時間和離散時間的數(shù)學(xué)模型,以及基于極點配置的單相電壓型PWM逆變器電流內(nèi)環(huán)電壓外環(huán)雙閉環(huán)控制系統(tǒng)的設(shè)計過程,同時給出了仿真結(jié)果,仿真表明此系統(tǒng)具有很好的動、靜態(tài)性能,并且具有自動限流功能,提高了系統(tǒng)的可靠性。緊接著分析了FPGA器件的特征和結(jié)構(gòu)。在給出本芯片應(yīng)用目標(biāo)的基礎(chǔ)上,制定了FPGA目標(biāo)器件的選擇原則和芯片的技術(shù)規(guī)格,完成了器件選型及相關(guān)的開發(fā)環(huán)境和工具的選取。然后系統(tǒng)闡述了復(fù)雜FPGA設(shè)計的設(shè)計方法學(xué),詳細介紹了基于FPGA的ASIC設(shè)計流程,概要介紹了僅使用QuartusII的開發(fā)流程,以及Modelsim、SynplifyPro、QuartusII結(jié)合使用的開發(fā)流程。在此基礎(chǔ)上,進行了芯片系統(tǒng)功能劃分,針對:DDS標(biāo)準(zhǔn)正弦波發(fā)生器,電壓電流雙環(huán)控制算法單元,硬件PI算法單元,SPWM產(chǎn)生器,三角波發(fā)生器,死區(qū)控制器,數(shù)據(jù)流/控制流模塊等逆變器控制硬件算法/控制單元,研究了它們的硬件算法,完成了模塊化設(shè)計。分析了全數(shù)字鎖相環(huán)的結(jié)構(gòu)和模型,以此為基礎(chǔ),設(shè)計了一種應(yīng)用于逆變器的,用比例積分方法替代傳統(tǒng)鎖相系統(tǒng)中的環(huán)路濾波,用相位累加器實現(xiàn)數(shù)控振蕩器(DCO)功能的高精度二階全數(shù)字鎖相環(huán)(DPLL)。分析了“流水線操作”等設(shè)計優(yōu)化問題,并針對逆變器控制系統(tǒng)中,控制系統(tǒng)算法呈多層結(jié)構(gòu),且層與層之間還有數(shù)據(jù)流聯(lián)系,其執(zhí)行順序和數(shù)據(jù)流的走向較為復(fù)雜,不利于直接采用流水線技術(shù)進行設(shè)計的特點,提出一種全新的“分層多級流水線”設(shè)計技術(shù),有效地解決了復(fù)雜控制系統(tǒng)的流水線優(yōu)化設(shè)計問題。本文最后對芯片運行穩(wěn)定性等問題進行了初步研究。指出了設(shè)計中的“競爭冒險”和飽受困擾之苦的“亞穩(wěn)態(tài)”問題,分析了產(chǎn)生機理,并給出了常用的解決措施。
上傳時間: 2013-05-28
上傳用戶:ice_qi
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1