亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

3<b>6</b>8

  • 本代碼為編碼開關代碼

    本代碼為編碼開關代碼,編碼開關也就是數字音響中的 360度旋轉的數字音量以及顯示器上用的(單鍵飛梭開 關)等類似鼠標滾輪的手動計數輸入設備。 我使用的編碼開關為5個引腳的,其中2個引腳為按下 轉輪開關(也就相當于鼠標中鍵)。另外3個引腳用來 檢測旋轉方向以及旋轉步數的檢測端。引腳分別為a,b,c b接地a,c分別接到P2.0和P2.1口并分別接兩個10K上拉 電阻,并且a,c需要分別對地接一個104的電容,否則 因為編碼開關的觸點抖動會引起輕微誤動作。本程序不 使用定時器,不占用中斷,不使用延時代碼,并對每個 細分步數進行判斷,避免一切誤動作,性能超級穩定。 我使用的編碼器是APLS的EC11B可以參照附件的時序圖 編碼器控制流水燈最能說明問題,下面是以一段流水 燈來演示。

    標簽: 代碼 編碼開關

    上傳時間: 2017-07-03

    上傳用戶:gaojiao1999

  • C語言算法速查手冊 書本附件

    第1章 緒論 1 1.1 程序設計語言概述 1 1.1.1 機器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優點和缺點 4 1.2.1 C語言的優點 4 1.2.2 C語言的缺點 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復雜度 8 1.3.3 算法的準確性 10 1.3.4 算法的穩定性 14 第2章 復數運算 18 2.1 復數的四則運算 18 2.1.1 [算法1] 復數乘法 18 2.1.2 [算法2] 復數除法 20 2.1.3 【實例5】 復數的四則運算 22 2.2 復數的常用函數運算 23 2.2.1 [算法3] 復數的乘冪 23 2.2.2 [算法4] 復數的n次方根 25 2.2.3 [算法5] 復數指數 27 2.2.4 [算法6] 復數對數 29 2.2.5 [算法7] 復數正弦 30 2.2.6 [算法8] 復數余弦 32 2.2.7 【實例6】 復數的函數運算 34 第3章 多項式計算 37 3.1 多項式的表示方法 37 3.1.1 系數表示法 37 3.1.2 點表示法 38 3.1.3 [算法9] 系數表示轉化為點表示 38 3.1.4 [算法10] 點表示轉化為系數表示 42 3.1.5 【實例7】 系數表示法與點表示法的轉化 46 3.2 多項式運算 47 3.2.1 [算法11] 復系數多項式相乘 47 3.2.2 [算法12] 實系數多項式相乘 50 3.2.3 [算法13] 復系數多項式相除 52 3.2.4 [算法14] 實系數多項式相除 54 3.2.5 【實例8】 復系數多項式的乘除法 56 3.2.6 【實例9】 實系數多項式的乘除法 57 3.3 多項式的求值 59 3.3.1 [算法15] 一元多項式求值 59 3.3.2 [算法16] 一元多項式多組求值 60 3.3.3 [算法17] 二元多項式求值 63 3.3.4 【實例10】 一元多項式求值 65 3.3.5 【實例11】 二元多項式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實矩陣相乘 68 4.1.2 [算法19] 復矩陣相乘 70 4.1.3 【實例12】 實矩陣與復矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實例14】 驗證矩陣求逆算法 97 4.3.5 【實例15】 驗證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實矩陣的QR分解 112 4.4.5 [算法30] 對稱實矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實例16】 對一般實矩陣進行QR分解 126 4.4.8 【實例17】 對稱矩陣的相似變換 127 4.4.9 【實例18】 一般實矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關法 147 4.5.5 【實例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復系數方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實系數方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復系數方程組的全選主元高斯-約當消去法 163 5.1.4 [算法39] 求解實系數方程組的全選主元高斯-約當消去法 168 5.1.5 [算法40] 求解大型稀疏系數矩陣方程組的高斯-約當消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實例21】 解線性實系數方程組 179 5.1.9 【實例22】 解線性復系數方程組 180 5.1.10 【實例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實例24】 求解對稱正定方程組 191 5.2.5 【實例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實例26】 解病態方程組 214 5.3.8 【實例27】 用迭代法解方程組 215 5.3.9 【實例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實根的初始近似值或根的所在區間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實例29】 用對分法求非線性方程組的實根 232 6.2.6 【實例30】 用牛頓法求非線性方程組的實根 233 6.2.7 【實例31】 用插值法求非線性方程組的實根 235 6.2.8 【實例32】 用埃特金迭代法求非線性方程組的實根 237 6.3 求實系數多項式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實例33】 用QR方法求解多項式的全部根 240 6.4 求非線性方程組一組實根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實例34】 用梯度法計算非線性方程組的一組實根 250 6.4.4 【實例35】 用擬牛頓法計算非線性方程組的一組實根 252 第7章 代數插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區間插值 259 7.1.4 【實例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數插值 296 7.5.4 【實例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實例41】 驗證連分式插值的函數 308 第8章 數值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實例42】 變步長積分法進行一重積分 325 8.1.7 【實例43】 變步長辛卜生積分法進行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應高斯求積方法 337 8.2.6 【實例44】 有限區間高斯求積法 342 8.2.7 【實例45】 半無限區間內高斯求積法 343 8.2.8 【實例46】 無限區間內高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實例47】 連分式法進行一重積分 354 8.3.4 【實例48】 連分式法進行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進行二重積分 358 8.4.3 【實例49】 一重積分的蒙特卡洛法 360 8.4.4 【實例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進的歐拉方法 370 9.1.4 【實例51】 歐拉方法求常微分方程數值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當姆斯預報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區間積分的雙邊法 399 9.3.4 【實例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實例54】 一元多項式擬合 417 10.2 矩形區域曲面擬合 419 10.2.1 [算法97] 矩形區域最小二乘曲面擬合 419 10.2.2 【實例55】 二元多項式擬合 428 第11章 特殊函數 430 11.1 連分式級數和指數積分 430 11.1.1 [算法98] 連分式級數求值 430 11.1.2 [算法99] 指數積分 433 11.1.3 【實例56】 連分式級數求值 436 11.1.4 【實例57】 指數積分求值 438 11.2 伽馬函數 439 11.2.1 [算法100] 伽馬函數 439 11.2.2 [算法101] 貝塔函數 441 11.2.3 [算法102] 階乘 442 11.2.4 【實例58】 伽馬函數和貝塔函數求值 443 11.2.5 【實例59】 階乘求值 444 11.3 不完全伽馬函數 445 11.3.1 [算法103] 不完全伽馬函數 445 11.3.2 [算法104] 誤差函數 448 11.3.3 [算法105] 卡方分布函數 450 11.3.4 【實例60】 不完全伽馬函數求值 451 11.3.5 【實例61】 誤差函數求值 452 11.3.6 【實例62】 卡方分布函數求值 453 11.4 不完全貝塔函數 454 11.4.1 [算法106] 不完全貝塔函數 454 11.4.2 [算法107] 學生分布函數 457 11.4.3 [算法108] 累積二項式分布函數 458 11.4.4 【實例63】 不完全貝塔函數求值 459 11.5 貝塞爾函數 461 11.5.1 [算法109] 第一類整數階貝塞爾函數 461 11.5.2 [算法110] 第二類整數階貝塞爾函數 466 11.5.3 [算法111] 變型第一類整數階貝塞爾函數 469 11.5.4 [算法112] 變型第二類整數階貝塞爾函數 473 11.5.5 【實例64】 貝塞爾函數求值 476 11.5.6 【實例65】 變型貝塞爾函數求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實例66】 第一類勒讓德橢圓函數積分求值 490 11.6.6 【實例67】 第二類勒讓德橢圓函數積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點所在的區間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導數的Brent方法 506 12.1.5 【實例68】 使用黃金分割搜索法求極值 511 12.1.6 【實例69】 使用Brent法求極值 513 12.1.7 【實例70】 使用帶導數的Brent法求極值 515 12.2 多元函數求極值 517 12.2.1 [算法121] 不需要導數的一維搜索 517 12.2.2 [算法122] 需要導數的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準牛頓法 531 12.2.6 【實例71】 驗證不使用導數的一維搜索 536 12.2.7 【實例72】 用Powell算法求極值 537 12.2.8 【實例73】 用共軛梯度法求極值 539 12.2.9 【實例74】 用準牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規劃問題的單純形法 556 12.3.4 【實例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實例77】 求解線性規劃問題 571 第13章 隨機數產生與統計描述 574 13.1 均勻分布隨機序列 574 13.1.1 [算法129] 產生0到1之間均勻分布的一個隨機數 574 13.1.2 [算法130] 產生0到1之間均勻分布的隨機數序列 576 13.1.3 [算法131] 產生任意區間內均勻分布的一個隨機整數 577 13.1.4 [算法132] 產生任意區間內均勻分布的隨機整數序列 578 13.1.5 【實例78】 產生0到1之間均勻分布的隨機數序列 580 13.1.6 【實例79】 產生任意區間內均勻分布的隨機整數序列 581 13.2 正態分布隨機序列 582 13.2.1 [算法133] 產生任意均值與方差的正態分布的一個隨機數 582 13.2.2 [算法134] 產生任意均值與方差的正態分布的隨機數序列 585 13.2.3 【實例80】 產生任意均值與方差的正態分布的一個隨機數 587 13.2.4 【實例81】 產生任意均值與方差的正態分布的隨機數序列 588 13.3 統計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗 591 13.3.3 [算法137] 方差不同時的t分布檢驗 594 13.3.4 [算法138] 方差的F檢驗 596 13.3.5 [算法139] 卡方檢驗 599 13.3.6 【實例82】 計算隨機樣本的矩 601 13.3.7 【實例83】 t分布檢驗 602 13.3.8 【實例84】 F分布檢驗 605 13.3.9 【實例85】 檢驗卡方檢驗的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數組的二分查找 609 14.1.2 [算法141] 無序數組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數組查找第M小的元素 613 14.1.4 【實例86】 基本查找 615 14.2 結構體和磁盤文件的查找 617 14.2.1 [算法143] 無序結構體數組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實例87】 結構體數組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數 622 14.3.2 [算法146] 哈希函數 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實例88】 構造哈希表并進行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數排序 651 15.4.2 [算法157] 基數排序 653 15.4.3 【實例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實例93】 二路歸并排序 660 第16章 數學變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復數據快速傅里葉變換 662 16.1.2 [算法160] 復數據快速傅里葉逆變換 666 16.1.3 [算法161] 實數據快速傅里葉變換 669 16.1.4 【實例94】 驗證傅里葉變換的函數 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實例95】 驗證沃爾什變換和哈達瑪的函數 684 16.2.5 【實例96】 驗證離散余弦變換的函數 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實例97】 驗證五點三次平滑 692 16.3.4 【實例98】 驗證α-β-γ濾波算法 693  

    標簽: C 算法 附件 源代碼

    上傳時間: 2015-06-29

    上傳用戶:cbsdukaf

  • 計算機網絡實驗

    網際協議IP實驗報告 1、IP在計算校驗和時包括哪些內容? 2、第1步中主機A所編輯的報文,經過主機B到達主機E后,報文數據是否發生變化?記錄有變化字段值的變化情況。并簡述發生變化的原因。 3、主機B、E是否能捕獲到主機A所發送的報文?簡述產生這種現象的原因。

    標簽: 計算機網絡 實驗

    上傳時間: 2016-05-27

    上傳用戶:g娃娃163

  • java學生數據庫

    /*import java.util.Scanner; //主類 public class student122 {   //主方法   public static void main(String[] args){     //定義7個元素的字符數組     String[] st = new String[7];     inputSt(st);       //調用輸入方法     calculateSt(st);   //調用計算方法     outputSt(st);      //調用輸出方法   }   //其他方法   //輸入方法 private static void inputSt(String st[]){     System.out.println("輸入學生的信息:");   System.out.println("學號 姓名 成績1,2,3");   //創建鍵盤輸入類   Scanner ss = new Scanner(System.in);   for(int i=0; i<5; i++){     st[i] = ss.next(); //鍵盤輸入1個字符串   } }   //計算方法 private static void calculateSt(String[] st){   int sum = 0;         //總分賦初值 int ave = 0;         //平均分賦初值 for(int i=2;i<5;i++) {   /計總分,字符變換成整數后進行計算   sum += Integer.parseInt(st[i]); } ave = sum/3;         //計算平均分 //整數變換成字符后保存到數組里 st[5] = String.valueOf(sum); st[6] = String.valueOf(ave); }   //輸出方法 private static void outputSt(String[] st){     System.out.print("學號 姓名 ");   //不換行   System.out.print("成績1 成績2 成績3 ");   System.out.println("總分 平均分");//換行   //輸出學生信息   for(int i=0; i<7; i++){     //按格式輸出,小于6個字符,補充空格     System.out.printf("%6s", st[i]);   }   System.out.println();            //輸出換行 } }*/   import java.util.Scanner;   public class student122 {   public static void main(String[] args) { // TODO 自動生成的方法存根 String[][] st = new String[3][8]; inputSt(st); calculateSt(st); outputSt(st); }   //輸入方法 private static void inputSt(String st[][]) { System.out.println("輸入學生信息:"); System.out.println("班級 學號 姓名 成績:數學 物理 化學"); //創建鍵盤輸入類 Scanner ss = new Scanner(System.in); for(int j = 0; j < 3; j++) { for(int i = 0; i < 6; i++) { st[j][i] = ss.next(); } } } //輸出方法 private static void outputSt(String st[][]) { System.out.println("序號 班級 學號 姓名 成績:數學 物理 化學 總分 平均分"); //輸出學生信息 for(int j = 0; j < 3; j++) { System.out.print(j+1 + ":"); for(int i = 0; i < 8; i++) { System.out.printf("%6s", st[j][i]); } System.out.println(); } }     //計算方法     private static void calculateSt(String[][] st)     {      int sum1 = 0;      int sum2 = 0; int sum3 = 0;      int ave1 = 0;      int ave2 = 0;      int ave3 = 0;      for(int i = 3; i < 6; i++)      {      sum1 += Integer.parseInt(st[0][i]);      }      ave1 = sum1/3;           for(int i = 3; i < 6; i++)      {      sum2 += Integer.parseInt(st[1][i]);      }      ave2 = sum2/3;           for(int i = 3; i < 6; i++)      {      sum3 += Integer.parseInt(st[2][i]);      }      ave3 = sum3/3;           st[0][6] = String.valueOf(sum1);      st[1][6] = String.valueOf(sum2);      st[2][6] = String.valueOf(sum3);      st[0][7] = String.valueOf(ave1);      st[1][7] = String.valueOf(ave2);      st[2][7] = String.valueOf(ave3);     } }

    標簽: java 數據庫

    上傳時間: 2017-03-17

    上傳用戶:simple

  • 數據結構實驗

    #include <iostream> #include <stdio.head> #include <stdlib.head> #include <string.head> #define ElemType int #define max 100 using namespace std; typedef struct node1 { ElemType data; struct node1 *next; }Node1,*LinkList;//鏈棧 typedef struct { ElemType *base; int top; }SqStack;//順序棧 typedef struct node2 { ElemType data; struct node2 *next; }Node2,*LinkQueue; typedef struct node22 { LinkQueue front; LinkQueue rear; }*LinkList;//鏈隊列 typedef struct { ElemType *base; int front,rear; }SqQueue;//順序隊列 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 //1.采用鏈式存儲實現棧的初始化、入棧、出棧操作。 LinkList CreateStack()//創建棧 { LinkList top; top=NULL; return top; } bool StackEmpty(LinkList s)//判斷棧是否為空,0代表空 { if(s==NULL) return 0; else return 1; } LinkList Pushead(LinkList s,int x)//入棧 { LinkList q,top=s; q=(LinkList)malloc(sizeof(Node1)); q->data=x; q->next=top; top=q; return top; } LinkList Pop(LinkList s,int &e)//出棧 { if(!StackEmpty(s)) { printf("棧為空。"); } else { e=s->data; LinkList p=s; s=s->next; free(p); } return s; } void DisplayStack(LinkList s)//遍歷輸出棧中元素 { if(!StackEmpty(s)) printf("棧為空。"); else { wheadile(s!=NULL) { cout<<s->data<<" "; s=s->next; } cout<<endl; } } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 //2.采用順序存儲實現棧的初始化、入棧、出棧操作。 int StackEmpty(int t)//判斷棧S是否為空 { SqStack.top=t; if (SqStack.top==0) return 0; else return 1; } int InitStack() { SqStack.top=0; return SqStack.top; } int pushead(int t,int e) { SqStack.top=t; SqStack.base[++SqStack.top]=e; return SqStack.top; } int pop(int t,int *e)//出棧 { SqStack.top=t; if(!StackEmpty(SqStack.top)) { printf("棧為空."); return SqStack.top; } *e=SqStack.base[s.top]; SqStack.top--; return SqStack.top; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 //3.采用鏈式存儲實現隊列的初始化、入隊、出隊操作。 LinkList InitQueue()//創建 { LinkList head; head->rear=(LinkQueue)malloc(sizeof(Node)); head->front=head->rear; head->front->next=NULL; return head; } void deleteEle(LinkList head,int &e)//出隊 { LinkQueue p; p=head->front->next; e=p->data; head->front->next=p->next; if(head->rear==p) head->rear=head->front; free(p); } void EnQueue(LinkList head,int e)//入隊 { LinkQueue p=(LinkQueue)malloc(sizeof(Node)); p->data=e; p->next=NULL; head->rear->next=p; head->rear=p; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 //4.采用順序存儲實現循環隊列的初始化、入隊、出隊操作。 bool InitQueue(SqQueue &head)//創建隊列 { head.data=(int *)malloc(sizeof(int)); head.front=head.rear=0; return 1; } bool EnQueue(SqQueue &head,int e)//入隊 { if((head.rear+1)%MAXQSIZE==head.front) { printf("隊列已滿\n"); return 0; } head.data[head.rear]=e; head.rear=(head.rear+1)%MAXQSIZE; return 1; } int QueueLengthead(SqQueue &head)//返回隊列長度 { return (head.rear-head.front+MAXQSIZE)%MAXQSIZE; } bool deleteEle(SqQueue &head,int &e)//出隊 { if(head.front==head.rear) { cout<<"隊列為空!"<<endl; return 0; } e=head.data[head.front]; head.front=(head.front+1)%MAXQSIZE; return 1; } int gethead(SqQueue head)//得到隊列頭元素 { return head.data[head.front]; } int QueueEmpty(SqQueue head)//判斷隊列是否為空 { if (head.front==head.rear) return 1; else return 0; } void travelQueue(SqQueue head)//遍歷輸出 { wheadile(head.front!=head.rear) { printf("%d ",head.data[head.front]); head.front=(head.front+1)%MAXQSIZE; } cout<<endl; } 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 //5.在主函數中設計一個簡單的菜單,分別測試上述算法。 int main() { LinkList top=CreateStack(); int x; wheadile(scanf("%d",&x)!=-1) { top=Pushead(top,x); } int e; wheadile(StackEmpty(top)) { top=Pop(top,e); printf("%d ",e); }//以上是鏈棧的測試 int top=InitStack(); int x; wheadile(cin>>x) top=pushead(top,x); int e; wheadile(StackEmpty(top)) { top=pop(top,&e); printf("%d ",e); }//以上是順序棧的測試 LinkList Q; Q=InitQueue(); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q,x); } int e; wheadile(Q) { deleteEle(Q,e); printf("%d ",e); }//以上是鏈隊列的測試 SqQueue Q1; InitQueue(Q1); int x; wheadile(scanf("%d",&x)!=-1) { EnQueue(Q1,x); } int e; wheadile(QueueEmpty(Q1)) { deleteEle(Q1,e); printf("%d ",e); } return 0; }

    標簽: 數據結構 實驗

    上傳時間: 2018-05-09

    上傳用戶:123456..

  • 迷宮問題的求解

    問題描述:以一個m*n的長方陣表示迷宮,0和1分別表示迷宮中的通路和障礙。設計一個程序,對任意設定的迷宮,求出一條從入口到出口的通路,或得出沒有通路的結論。 1.基本要求 (1)首先實現一個以鏈表作存儲結構的棧類型,然后編寫一個求解迷宮的非遞歸程序。求得的通路以三元組(i,j,d)的形式輸出。其中:(i,j)指示迷宮中的一個坐標,d表示走到下一坐標的方向。如下圖所示迷宮。從入口(1,1)到出口(8,8)的求解結果如下: (1,1)(1,2),(2,2)(3,2)(3,1)(4,1)(5,1)(5,2)(5,3)(6,3)(6,4)(6,5)(5,5)(4,5)(4,6)(4,7)(3,7)(3,8)(4,8)(5,8)(6,8)(7,8)(8,8) (2)以方陣形式輸出迷宮及其通路。 2.重點、難點 重點:針對迷宮問題的特點,利用棧的后進先出特點,選擇適當的數據結構。 難點:遞歸算法的設計與求解。

    標簽: 迷宮

    上傳時間: 2018-07-03

    上傳用戶:MOOMWHITE

  • python爬蟲獲取大量免費有效代理ip--有效防止ip被封

    以后再也不用擔心寫爬蟲ip被封,不用擔心沒錢買代理ip的煩惱了 在使用python寫爬蟲時候,你會遇到所要爬取的網站有反爬取技術比如用同一個IP反復爬取同一個網頁,很可能會被封。如何有效的解決這個問題呢?我們可以使用代理ip,來設置代理ip池。 現在教大家一個可獲取大量免費有效快速的代理ip方法,我們訪問西刺免費代理ip網址 這里面提供了許多代理ip,但是我們嘗試過后會發現并不是每一個都是有效的。所以我們現在所要做的就是從里面提供的篩選出有效快速穩定的ip。 以下介紹的免費獲取代理ip池的方法: 優點:免費、數量多、有效、速度快 缺點:需要定期篩選 主要思路: 從網址上爬取ip地址并存儲 驗證ip是否能使用-(隨機訪問網址判斷響應碼) 格式化ip地址 代碼如下: 1.導入包 import requests from lxml import etree import time 1 2 3 2.獲取西刺免費代理ip網址上的代理ip def get_all_proxy():     url = 'http://www.xicidaili.com/nn/1'     headers = {         'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36',     }     response = requests.get(url, headers=headers)     html_ele = etree.HTML(response.text)     ip_eles = html_ele.xpath('//table[@id="ip_list"]/tr/td[2]/text()')     port_ele = html_ele.xpath('//table[@id="ip_list"]/tr/td[3]/text()')     proxy_list = []     for i in range(0,len(ip_eles)):         proxy_str = 'http://' + ip_eles[i] + ':' + port_ele[i]         proxy_list.append(proxy_str)     return proxy_list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3.驗證獲取的ip def check_all_proxy(proxy_list):     valid_proxy_list = []     for proxy in proxy_list:         url = 'http://www.baidu.com/'         proxy_dict = {             'http': proxy         }         try:             start_time = time.time()             response = requests.get(url, proxies=proxy_dict, timeout=5)             if response.status_code == 200:                 end_time = time.time()                 print('代理可用:' + proxy)                 print('耗時:' + str(end_time - start_time))                 valid_proxy_list.append(proxy)             else:                 print('代理超時')         except:             print('代理不可用--------------->'+proxy)     return valid_proxy_list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 4.輸出獲取ip池 if __name__ == '__main__':     proxy_list = get_all_proxy()     valid_proxy_list = check_all_proxy(proxy_list)     print('--'*30)     print(valid_proxy_list) 1 2 3 4 5 技術能力有限歡迎提出意見,保證積極向上不斷學習 ———————————————— 版權聲明:本文為CSDN博主「彬小二」的原創文章,遵循 CC 4.0 BY-SA 版權協議,轉載請附上原文出處鏈接及本聲明。 原文鏈接:https://blog.csdn.net/qq_39884947/article/details/86609930

    標簽: python ip 代理 防止

    上傳時間: 2019-11-15

    上傳用戶:fygwz1982

  • 永嘉微電優勢出貨ht16c21RAM映射20×416×8LCD驅動控制器

    永嘉微電科技優勢產品——高抗干擾LCD驅動IC系列(HT16C21、HT16C22、HT16C23、HT16C24)   產品型號:HT16C21           產品品牌:HOLTEK/合泰 產品年份:新年份          封裝形式:NSOP16/SOP20/SOP24/SOP28     工程技術服務支持,價格具有優勢! 概述 HT16C21 是一款存儲器映射和多功能 LCD 控制 / 驅動芯片。該芯片顯示模式有 80 點 (20×4) 或 128 點 (16×8)。HT16C21 的軟件配置特性使得它 適用于多種 LCD 應用,包括 LCD 模塊和顯示子 系統。HT16C21 通過雙線雙向 I2C 接口與大多數 微處理器 / 微控制器進行通信。 HT16C2X系列為I2C介面、RAM mapping的LCD控制暨驅動IC,此系列以先進設計技術降低IC耗電、提升抗雜訊及ESD防護能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功獲得單相電表客戶的認可及采用,HT16C23及HT16C24適合于點數需求較大的三相電表的應用。 此系列內建顯示記憶體及RC振蕩電路;工作電壓范圍:2.4V~5.5V;提供2種圖框掃描頻率:80Hz or 160Hz;可由外掛電阻調整VLCD電壓,也提供內建可由指令調整16階的VLCD電壓;提供全屏閃爍功能、有三種頻率可選。透過I2C介面及多項內置電路,HT16C2X系列與系統控制晶片的傳輸只需2根信號線,大大省去系統零件及布線、降低客戶系統成本。 特性 -工作電壓:2.4 ~ 5.5V -內部 32kHz RC 振蕩器 -Bias:1/3 或 1/4;Duty:1/4 或 1/8 -帶電壓跟隨器的內部 LCD 偏置發生器 -I2C 接口 -兩個可選 LCD 幀頻率:80Hz 或 160Hz -多達 16×8 位 RAM 用來存儲顯示數據 -顯示模式: 20×4 模式:20 SEGs 和 4 COMs 16×8 模式:16 SEGs 和 8 COMs -多種閃爍模式 -讀 / 寫地址自動增加 -內建 16 級 VLCD 電壓調整電路 -低功耗 -提供 VLCD 引腳用來調整 LCD 工作電壓 -采用硅柵極 CMOS 制造工藝 -封裝類型:20/24/28 SOP, 16 NSOP 此篇產品敘述為功能簡介,如需要完整產品PDF資料可以聯系許先生索取! HT16C21適用于高抗噪聲的小點數LCD應用 HT16C21是采用I2C接口的通用型LCD控制暨驅動器,可選用4 Common或8 Common的驅動模式,最多可顯示128點;本產品采用低耗電設計、在3V工作時只有18uA耗電流。高整合性腳位設計:比競爭者封裝腳數更少、可顯示點數更多;與系統控制芯片的傳輸只需2根信號線、外掛零件少、可降低客戶系統成本。 HT16C21內建有128Bit顯示內存,可降低主控MCU的負擔;工作電壓寬廣:2.4V~5.5V;提供2種圖框掃瞄頻率;內建調整電路可以指令設定16階VLCD電壓;提供全屏閃爍功能、有三種頻率可選。更大可顯示點數為4 COM x 20 SEG或8 COM x 16 SEG。 HT16C2x系列具備低耗電、高抗噪聲及高ESD防護能力。全系列包含HT16C21、HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功獲得大陸、美國地區單相電表客戶的認可及采用,HT16C23及HT16C24適合于點數需求較大的三相電表的應用。 HT16C21適用于家電、民生消費品、工業儀表、水表、農網表、瓦斯表等之應用。HT16C21提供28/24/20SOP及16NSOP封裝,依封裝不同、點數略有差異,有關點數及封裝的選用。 -------------------------------------------------------- 產品型號:HT16C22          產品品牌:HOLTEK/合泰 產品年份:新年份              封裝形式:LQFP48/LQFP52 工程技術服務支持,價格具有優勢! 概述 HT16C22/HT16C22G 是一款存儲器映射和多功能 LCD 控制 / 驅動芯片。該系列芯片顯示模式有 176 點 (44×4)。HT16C22/HT16C22G 軟件配置特性使 得它適用于多種 LCD 應用,包括 LCD 模塊和顯示子系統。HT16C22/HT16C22G 通過雙線雙向 I2C 接口與大多數微處理器 / 微控制器進行通信。 HT16C2X系列為I2C介面、RAM mapping的LCD控制暨驅動IC,此系列以先進設計技術降低IC耗電、提升抗雜訊及ESD防護能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功獲得單相電表客戶的認可及采用,HT16C23及HT16C24適合于點數需求較大的三相電表的應用。 特性 -工作電壓:2.4V ~ 5.5V -內部 32kHz RC 振蕩器 -Bias:1/2 或 1/3;Duty:1/4 -帶電壓跟隨器的內部 LCD 偏置發生器 -I2C接口 -兩個可選 LCD 幀頻率:80Hz 或 160Hz -多達 44×4 位 RAM 用來存儲顯示數據 -更大顯示模式 44×4:44 SEGs 和 4 COMs -多種閃爍模式 -讀 / 寫地址自動增加 -內建 16 級 VLCD 電壓調整電路 -低功耗 -提供 VLCD 引腳來調整 LCD 工作電壓 -采用硅柵極 CMOS 制造工藝 -封裝類型:48LQFP,52QFP 此篇產品敘述為功能簡介,如需要完整產品PDF資料可以聯系許先生索取! LCD驅動IC推出HT16C22新I2C接口系列 本公司專注于TN/STN LCD的中小尺寸應用,HT162X系列控制暨驅動IC已營銷業界多年。2010年盛群更展開I2C標準接口系列的新產品開發,此系列包含HT16C22、HT16C23、HT16C24、HT16K23等。IC特性強調低功耗、高抗噪聲及高系統ESD防護能力,以高整合度的腳位包裝,提供客戶更大的顯示點數。HT16C22是首先開發完成的型號,HT16C23、HT16C24及HT16K23會陸續推出。 HT16C22內建顯示內存及RC振蕩電路;工作電壓寬廣:2.4V~5.5V;2種Bias分壓:1/2 & 1/3;更大顯示點數可支持4 Common x 44 Segment(52QFP)。提供2種圖框掃瞄頻率:80Hzor 160Hz;可由外掛電阻調整VLCD電壓,也提供16階可由內建指令調整的VLCD電壓。透過I2C接口及多項內置電路,HT16C22與系統控制芯片的傳輸只需2根信號線,大大省去系統零件及布線、降低客戶系統成本。與其它同包裝的產品,HT16C22提供更多的顯示點數。 HT16C22適用于家電、車載、民生消費品、工業儀表等的LCD顯示器的控制及驅動,高抗噪聲及高ESD防護能力尤適合數字式LCD電表、水表、瓦斯表等。依包裝不同尚有2種點數可選擇:4 Common x 40 Segment(48 LQFP)及4 Common x 36 Segment(44QFP)。 -------------------------------------------------------- 產品型號:HT16C23              產品品牌:HOLTEK/合泰 產品年份:新年份                  封裝形式:LQFP64/LQFP48   工程技術服務支持,價格具有優勢! HT16C23/HT16C23G -- RAM Mapping 56*4 / 52*8LCD Driver Controller 概述 HT16C23/HT16C23G 是一款存儲器映射和多功能 的 LCD 控制 / 驅動芯片。該芯片的顯示字段為 224 點 (56 SEG × 4COM) 或 416 點 (52 SEG × 8 COM)。HT16C23/HT16C23G 芯片的軟件配置特 性使其適用于多種 LCD 應用,包括 LCD 模塊和 顯示子系統。HT16C23/HT16C23G 芯片可通過雙 線雙向 I2C 接口與大多數微處理器或微控制器進行通信。 HT16C2X系列為I2C介面、RAM mapping的LCD控制暨驅動IC,此系列以先進設計技術降低IC耗電、提升抗雜訊及ESD防護能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功獲得單相電表客戶的認可及采用,HT16C23及HT16C24適合于點數需求較大的三相電表的應用。 此系列內建顯示記憶體及RC振蕩電路;工作電壓范圍:2.4V~5.5V;提供2種圖框掃描頻率:80Hz or 160Hz;可由外掛電阻調整VLCD電壓,也提供內建可由指令調整16階的VLCD電壓;提供全屏閃爍功能、有三種頻率可選。透過I2C介面及多項內置電路,HT16C2X系列與系統控制晶片的傳輸只需2根信號線,大大省去系統零件及布線、降低客戶系統成本。 產品特性 -工作電壓:2.4 ~ 5.5V -內部 32kHz RC 振蕩器 -Bias:1/3 或 1/4;Duty:1/4 或 1/8 -帶電壓跟隨器的內部 LCD 偏置發生器 -I2C 總線接口 -兩種可選的 LCD 幀頻率:80Hz 或 160Hz -多達 52×8 位的 RAM 用于存儲顯示數據 -顯示模式: 56×4模式:56 SEG × 4 COM 56×4模式:56 SEG × 4 COM -多種閃爍模式 -讀 / 寫地址自動增加 -內建 16 級 VLCD 電壓調整電路 -低功耗 -提供 VLCD引腳來調整 LCD 工作電壓 -采用硅柵極 CMOS 工藝制造 -封裝類型:48LQFP,64LQFP 此篇產品敘述為功能簡介,如需要完整產品PDF資料可以聯系許先生索取! -------------------------------------------------------- 產品型號:HT16C24           產品品牌:HOLTEK/合泰 產品年份:新年份              封裝形式:LQFP80/LQFP64   工程技術服務支持,價格具有優勢! HT16C24/HT16C24G -- RAM Mapping 72*4 / 68*8 /60*16 LCD Driver Controller 概述 HT16C24/HT16C24G 是 一 款 存 儲 器 映 射 和 多 功 能 LCD 控制驅動芯片。該芯片顯示模式有 288 點 (72×4),544 點 (68×8) 或 960 點 (60×16 )。HT16C24/HT16C24G 的軟件配置特性使得它適用 于多種 LCD 應用,包括 LCD 模塊和顯示子系統。 HT16C24/HT16C24G 通過雙線雙向 I2C 接口與大 多數微處理器 / 微控制器進行通信。 HT16C2X系列為I2C介面、RAM mapping的LCD控制暨驅動IC,此系列以先進設計技術降低IC耗電、提升抗雜訊及ESD防護能力。全系列包含HT16C22/HT16C22G、HT16C23/HT16C23G、HT16C24/HT16C24G等。HT16C22已成功獲得單相電表客戶的認可及采用,HT16C23及HT16C24適合于點數需求較大的三相電表的應用。 此系列內建顯示記憶體及RC振蕩電路;工作電壓范圍:2.4V~5.5V;提供2種圖框掃描頻率:80Hz or 160Hz;可由外掛電阻調整VLCD電壓,也提供內建可由指令調整16階的VLCD電壓;提供全屏閃爍功能、有三種頻率可選。透過I2C介面及多項內置電路,HT16C2X系列與系統控制晶片的傳輸只需2根信號線,大大省去系統零件及布線、降低客戶系統成本。 特性 -工作電壓:2.4 ~ 5.5V -內部 32kHz RC 振蕩器 -Bias:1/3、1/4 或 1/5;Duty:1/4、1/8 或 1/16 -帶電壓跟隨器的內部 LCD 偏置發生器 -I2C接口 -兩個可選 LCD 幀頻率:80Hz 或 160Hz -多達 60×16 位 RAM 用來存儲顯示數據 -顯示模式: 72×4模式:72 SEGs 和 4 COMs 68×8模式:68 SEGs 和 8 COMs 60×16模式:60 SEGs 和 16 COMs -多種閃爍模式 -讀 / 寫地址自動增加 -內建 16 級 LCD 工作電壓調整電路 -低功耗 -提供 VLCD 引腳來調整 LCD 工作電壓 -采用硅柵極 CMOS 制造工藝 -封裝類型:64LQFP,80LQFP 此篇產品敘述為功能簡介,如需要完整產品PDF資料可以聯系許先生索取!   本公司是一家集產品銷售及代理、技術研發、工程服務為一體的IC設計銷售公司。專營LCD,LED液晶顯示驅動IC  成立于2000年,具有液晶顯示行業長達15年以上經驗。致力為客戶創造產品價值,充分發揮產品的優勢!上述介紹為產品簡介,如需具體產品資料歡迎聯系本公司聯系人索取。 LCD液晶驅動顯示主要型號為VK1024,VK1056,VK1072,HT1620,HT1621,HT1622,HT1622B,HT1623,HT1625,HT1626,HT16C21,HT16C22,HT16C23,HT16C24,HT16L21,HT16L23等。產品不斷更新中! LED液晶顯示驅動IC主要型號HT/VK/TM1635  HT/VK/TM1620B  HT/VK/TM1628  HT/VK/TM1668  HT/VK/TM1623 HT/VK/TM1637  HT/VK/TM1640  HT/VK/ TM1629  HT/VK/TM1624  HT/VK/TM1639 HT/VK/TM1626A等,產品不斷更新中! 備注:產品應用領域包括各式(LCD,LED面板顯示)家電、民生消費品、車載音響、醫療保健、運動機械、衡量器、工業儀表、LCD,LED顯示模塊、數碼伴侶、電子秤、萬年歷、玩具、禮品等各類工業和民用電器產品上。VK16C2X系列高抗噪聲及高ESD防護能力尤適合數字式LCD電表、水表、瓦斯表等。 LCD/LED/VFD液晶控制器及驅動器系列 芯片簡介如下: 高抗噪LCD液晶控制器及驅動系列 HT16C21  2.4~5.5V  20seg*4com 16seg*8com                 偏壓1/3 1/4   I2C接口 HT16C22  2.4~5.5V  44seg*4com                            偏壓1/2 1/3   I2C接口 HT16C23  2.4~5.5V  56seg*4com 52seg*8com                 偏壓1/3 1/4   I2C接口 HT16C24  2.4~5.5V  72seg*4com 68seg*8com 60seg*16com     偏壓1/3 1/4 1/5  I2C口 HT16K23  2.4~5.5V  20seg*4com 16seg*8com Keyscan 20/16*1 偏壓1/3 1/4   I2C接口 HT9B92   2.4~5.5V  36seg*4com                            偏壓1/2 1/3   I2C接口 HT9B92G  2.4~5.5V  40seg*4com                            偏壓1/2 1/3   I2C接口 HT9B95A  2.4~5.5V  35seg*8com                            偏壓1/4       I2C接口 HT9B95B  2.4~5.5V  43seg*4com 39seg*8com                 偏壓1/3 1/4   I2C接口 HT9B95C  2.4~5.5V  43seg*4com 39seg*8com                 偏壓1/3 1/4   I2C接口   低電壓LCD液晶控制器及驅動系列 HT16L21   1.8V~5.5V  32seg*4com    接口I2C,SPI 3-Wire    偏壓1/2 1/3  44LQFP LED:8 HT16L23   1.8V~5.5V  52seg*4com 48*8 接口I2C,SPI 3-Wire  偏壓1/3 1/4  64LQFP LED:8 HT16LK24   1.8V~5.5V  67seg*1com  67seg*2com  67seg*3com  67seg*4com  63seg*8com 接口I2C,SPI 3-Wire  偏壓1/1 1/2 1/3 1/4  Keyscan:4*12   64/80LQFP  LED:12 (128 Step)   RAM映射LCD控制器和驅動器系列 VK1024B  2.4V~5.2V    6seg*4com                      偏壓1/2 1/3  NS0P16 VK1056B  2.4V~5.2V    14seg*4com                         偏壓1/2 1/3  SOP24 VK1056C  2.4V~5.2V    14seg*4com                         偏壓1/2 1/3  SSOP24 VK1072B  2.4V~5.2V    18seg*4com                         偏壓1/2 1/3  SOP28 VK1072C  2.4V~5.2V   18seg*4com                         偏壓1/2 1/3  SOP28 HT1620   2.4V~3.3V  32seg*4com 32seg*3com 32seg*2com     偏壓1/2 1/3  64LQFP HT1620G  2.4V~3.3V  32seg*4com 32seg*3com 32seg*2com     偏壓1/2 1/3  Goid Bump HT1621   2.4V~5.2V  32seg*4com 32seg*3com 32seg*2com     偏壓1/2 1/3  44LQFP 48SSOP/LQFP HT1621G  2.4V~5.2V  32seg*4com 32seg*3com 32seg*2com     偏壓1/2 1/3  Goid Bump HT1622    2.7V~5.2V  32seg*8com                          偏壓1/4  64QFP 44/48/52/64LQFP HT1622G   2.7V~5.2V  32seg*8com                          偏壓1/4      Goid Bump HT16220   2.4V~5.2V  32seg*8com                          偏壓1/4      64LQFP HT1623    2.7V~5.2V  48seg*8com                          偏壓1/4      100LQFP/100QFP HT1625    2.7V~5.2V  64seg*8com                          偏壓1/4      100LQFP/100QFP HT1626    2.7V~5.2V  48seg*16com                         偏壓1/5      100LQFP/100QFP HT1647    2.7V~5.2V  64seg*16com                         偏壓1/4 1/5  100LQFP/100QFP HT1647G   2.7V~5.2V  64seg*16com                         偏壓1/4 1/5  Goid Bump HT1650    2.7V~5.2V  80seg*16com  64seg*32com            偏壓1/5 1/6  128QFP (以上型號全部封裝形式規格 均有現貨)   內存映射的LED控制器及驅動器 HT1632C   4.5V~5.5V  32seg*8com 24seg*16com  4-Wire接口            48/52LQFP HT1635A   4.5V~5.5V  44seg*8com   4-Wire接口                       64LQFP HT1635B   4.5V~5.5V  44seg*8com   I2C接口                           64LQFP HT16K33   4.5V~5.5V  16seg*8com   I2C接口  Keyscan:13*3            28SOP HT16K33   4.5V~5.5V  12seg*8com   I2C接口  Keyscan:10*3            24SOP HT16K33   4.5V~5.5V  8seg*8com    I2C接口  Keyscan:8*3             20SOP (以上型號全部封裝形式規格 均有現貨) (所有型號全部封裝均有現貨,歡迎加Q查詢 191 888 5898 許生)     LCD液晶顯示驅動控制器              HT1620   HT1620G   HT1621   HT1621B   HT1621G   HT1622   HT1622G   HT1623  HT1625   HT1626    HT16C21   HT16C22   HT16C23   HT16C24  HT1620   HT16220  HT1647   HT1650   HT1660    HT1670   HT16K23   HT9B92   HT9B92G    HT9B95A    HT9B95B   HT9B95C   HT16LK24  HT16L21  HT16L23   HT1611C  HT1613C  HT1616C (全部封裝、規格形式 均有海量現貨!)   二:LED/VFD控制、驅動器 HT16506   HT16511   HT16512   HT16515   HT16514   HT16561 HT16562  HT16565  HT16566  HT16523  HT16525  HT1632C  HT16K33  HT16K33  HT16528-001  HT16528-002  HT16528-003 (全部封裝、規格形式 均有海量現貨!)       芯片主要應用領域如下:  -顯示模塊:電子秤、無線麥克風、錄音筆、影音多媒體、小家電周邊 -家電類:電風扇、電飯煲、玩具、冷氣機、暖風機、空調扇、飲水機、抽油煙機、消毒柜、電熱水器、面包機、豆漿機、咖啡壺、電冰箱、洗衣機控制器、空調控制板等。 -通訊類:來電顯示電話、無繩電話、IC電話、投幣電話、對講機等 -玩具游戲類:無線遙控車、PS游戲機、跳舞毯、方向盤、手柄、電子槍、PS開機IC等。 -計算機周邊:顯示器控制、PC-MOUSE、單/雙滾、遙控MOUSE、鍵盤、手寫板等。 -智能卡類:IC卡煤氣表、電能表、水表、IC讀寫器、IC卡門禁系統等。 -汽車及防盜類:機車防盜器、********器、汽車天線控制器、里程表、汽車日歷等。 -醫用保健類:電子針灸器、甩脂機、智能體溫計、LCD顯示血壓計、跑步機、按摩器、按摩墊、按摩椅等。 -儀表類:電壓表、瓦斯表、電池電壓檢測器、頻率計、計數器、電度表、水位檢測器等。 -其它類:充電器、照相機、電子萬年鐘、自動給皂機、路燈控制器、呼叫服務器等

    標簽: 8LCD 16c c21 RAM 416 ht 16 21 微電 映射

    上傳時間: 2020-01-09

    上傳用戶:2937735731

  • 60個Android開發精典案例 Android軟件源碼

    60個Android開發精典案例 Android軟件源碼:2-1(Activity生命周期)3-1(Button與點擊監聽器)3-10-1(列表之ArrayAdapter適配)3-10-2(列表之SimpleAdapter適配)3-11(Dialog對話框)3-12-5(Activity跳轉與操作)3-12-6(橫豎屏切換處理)3-3(ImageButton圖片按鈕)3-4(EditText文本編輯)3-5(CheckBox與監聽)3-6(RadioButton與監聽)3-7(ProgressBar進度條)3-8(SeekBar 拖動條)3-9(Tab分頁式菜單)4-10(可視區域)4-11-1(Animation動畫)4-11-2-1(動態位圖)4-11-2-2(幀動畫)4-11-2-3(剪切圖動畫)4-13(操作游戲主角)4-14-1(矩形碰撞)4-14-2(圓形碰撞)4-14-4(多矩形碰撞)4-14-5(Region碰撞檢測)4-15-1(MediaPlayer音樂)4-15-2(SoundPool音效)4-16-1(游戲保存之SharedPreference)4-16-2(游戲保存之Stream)4-3(View游戲框架)4-4(SurfaceView游戲框架)4-7-1(貝塞爾曲線)4-7-2(Canvas畫布)4-8(Paint畫筆)4-9(Bitmap位圖渲染與操作)5-1(飛行射擊游戲實戰)6-1(360°平滑游戲搖桿)6-10-1(Socket協議)6-10-2(Http協議)6-11(本地化與國際化)6-2(多觸點縮放位圖)6-3(觸屏手勢識別)6-4(加速度傳感器)6-5(9patch工具)]6-6(截屏)6-8(游戲視圖與系統組件)6-9(藍牙對戰游戲)7-10-1(遍歷Body)7-10-2(Body的m_userData)7-11(為Body施加力)7-12(Body碰撞監聽)7-13-1(距離關節)7-13-2(旋轉關節)7-13-3(齒輪關節)7-13-4(滑輪關節)7-13-5-1(通過移動關節移動Body)7-13-5-2(通過移動關節綁定兩個Body動作)7-13-6(鼠標關節-拖拽Body)7-14(AABB獲取Body)7-4(Box2d物理世界)7-5在物理世界中添加矩形)7-7(添加自定義多邊形)7-9(在物理世界中添加圓形)8-1(迷宮小球)8-2(堆房子)

    標簽: android

    上傳時間: 2021-11-30

    上傳用戶:trh505

  • 代碼大全Steve McConnell著 919頁高清文字版

    軟件開發人員必備工具書,,目錄如下Welcome to Software Construction [1]1.1 What Is Software Construction?1.2 Why Is Software Construction Important?1.3 How to Read This Book......7.1 Valid Reasons to Create a Routine7.2 Design at the Routine Level7.3 Good Routine Names7.4 How Long Can a Routine Be?7.5 How to Use Routine Parameters7.6 Special Considerations in the Use of Functions7.7 Macro Routines and Inline RoutinesDefensive Programming [5.6 + new material]8.1 Protecting Your Program From Invalid Inputs8.2 Assertions8.3 Error Handling Techniques8.4 Exceptions8.5 Barricade Your Program to Contain the Damage Caused by Errors8.6 Debugging Aids8.7 Determining How Much Defensive Programming to Leave in Production Code8.8 Being Defensive About Defensive ProgrammingThe Pseudocode Programming Process [4+new material]9.1 Summary of Steps in Building Classes and Routines9.2 Pseudocode for Pros9.3 Constructing Routines Using the PPP9.4 Alternatives to the PPP......

    標簽: 代碼大全 軟件開發

    上傳時間: 2021-12-08

    上傳用戶:20125101110

主站蜘蛛池模板: 高要市| 武山县| 雷山县| 海安县| 宁国市| 静安区| 栖霞市| 宁南县| 越西县| 运城市| 开远市| 内乡县| 德保县| 宕昌县| 阿拉善左旗| 济阳县| 施甸县| 同仁县| 浑源县| 道孚县| 喀喇沁旗| 桂东县| 莱西市| 五常市| 温泉县| 伊吾县| 湖州市| 古浪县| 宁化县| 武鸣县| 寻乌县| 荔浦县| 闵行区| 满洲里市| 定边县| 晋州市| 龙胜| 育儿| 太白县| 凤冈县| 田东县|