亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

DRV8301電機(jī)開(kāi)發(fā)套件軟件手冊(cè)

  • 給定n 個整數a ,a , ,an 1 2  組成的序列

    給定n 個整數a ,a , ,an 1 2  組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區間i i j a , a , , a +1  為一個零和區間,相應的區間長度為j-i+1。

    標簽: 61516 an 整數 序列

    上傳時間: 2015-07-23

    上傳用戶:zhangzhenyu

  • 給定n 個整數a ,a , ,an 1 2  組成的序列

    給定n 個整數a ,a , ,an 1 2  組成的序列, a n i | |£ ,1 £ i £ n。如果對于i £ j ,有 0 = å = j k i k a ,則稱序列區間i i j a , a , , a +1  為一個零和區間,相應的區間長度為j-i+1。

    標簽: 61516 an 整數 序列

    上傳時間: 2013-12-21

    上傳用戶:偷心的海盜

  • 經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字

    經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去        掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++)    /*以下為三重循環*/   for(j=1 j<5 j++)     for (k=1 k<5 k++)     {      if (i!=k&&i!=j&&j!=k)    /*確保i、j、k三位互不相同*/      printf("%d,%d,%d\n",i,j,k)     } }

    標簽: 100 10 C語言 程序設計

    上傳時間: 2013-12-14

    上傳用戶:hfmm633

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。

    標簽: Floyd-Warshall Shortest Pairs Paths

    上傳時間: 2013-12-01

    上傳用戶:dyctj

  • //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p

    //Euler 函數前n項和 /* phi(n) 為n的Euler原函數 if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數:divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數的時候首先會判斷i是否是素數。 根據定義,當 x 是素數時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數 如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性) 經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */

    標簽: phi Euler else 函數

    上傳時間: 2016-12-31

    上傳用戶:gyq

  • 遙控解碼通過電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar d

    遙控解碼通過電腦串口顯示 /* 晶振:11.0569MHz */ #include <REGX52.h> #define uchar unsigned char uchar data IRcode[4] //定義一個4字節的數組用來存儲代碼 uchar CodeTemp //編碼字節緩存變量 uchar i,j,k //延時用的循環變量 sbit IRsignal=P3^2 //HS0038接收頭OUT端直接連P3.2(INT0) /**************************延時0.9ms子程序**********************/ void Delay0_9ms(void) {uchar j,k for(j=18 j>0 j--) for(k=20 k>0 k--) } /***************************延時1ms子程序**********************/ void Delay1ms(void) {uchar i,j for(i=2 i>0 i--) for(j=230 j>0 j--) }

    標簽: uchar unsigned 11.0569 include

    上傳時間: 2013-12-12

    上傳用戶:Breathe0125

  • 嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計 優化1:設計了yyy

    嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計 優化1:設計了yyy,即在o(k)計算公式時,當網絡進入平坦區時(<0.0001)學習率加大,出來后學習率又還原 優化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)

    標簽: matlab yyy BP網絡 計算公式

    上傳時間: 2014-11-30

    上傳用戶:妄想演繹師

  • 離散實驗 一個包的傳遞 用warshall

     實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k); 四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); } 

    標簽: warshall 離散 實驗

    上傳時間: 2016-06-27

    上傳用戶:梁雪文以

  • c語言算法排序

    1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.) #include<stdio.h> #include<stdlib.h> void merge(int arr[],int low,int mid,int high){      int i,k;      int *tmp=(int*)malloc((high-low+1)*sizeof(int));      int left_low=low;      int left_high=mid;      int right_low=mid+1;      int right_high=high;      for(k=0;left_low<=left_high&&right_low<=right_high;k++)      {      if(arr[left_low]<=arr[right_low]){                                        tmp[k]=arr[left_low++];                                        }      else{           tmp[k]=arr[right_low++];           } }             if(left_low<=left_high){                              for(i=left_low;i<=left_high;i++){                                                               tmp[k++]=arr[i];                                                               }                              }       if(right_low<=right_high){                              for(i=right_low;i<=right_high;i++)                                                                tmp[k++]=arr[i];                                                        }                              for(i=0;i<high-low+1;i++)                                                       arr[low+i]=tmp[i];       } void merge_sort(int a[],int p,int r){      int q;      if(p<r){              q=(p+r)/2;              merge_sort(a,p,q);              merge_sort(a,q+1,r);              merge(a,p,q,r);              }      } int main(){     int a[8]={3,5,8,6,4,1,1};     int i,j;     int x=10;     merge_sort(a,0,6);     printf("after Merging-Sort:\n");     for(i=0;i<7;i++){                      printf("%d",a[i]);                      }     printf("\n");     i=0;j=6;     do{                                    if(a[i]+a[j]==x){                                  printf("exist");                                  break;                                  }                  if(a[i]+a[j]>x)                                 j--;                  if(a[i]+a[j]<x)                                 i++;                       }while(i<=j);     if(i>j)              printf("not exist");     system("pause");     return 0;     }

    標簽: c語言 算法 排序

    上傳時間: 2017-04-01

    上傳用戶:糖兒水嘻嘻

  • 道理特分解法

    #include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; } 

    標簽: 道理特分解法

    上傳時間: 2018-05-20

    上傳用戶:Aa123456789

主站蜘蛛池模板: 通榆县| 平南县| 柳江县| 项城市| 定陶县| 宝坻区| 潞西市| 两当县| 广德县| 方山县| 新巴尔虎左旗| 贵港市| 手游| 营山县| 如东县| 株洲市| 松原市| 平阳县| 逊克县| 潞西市| 山东省| 汽车| 广南县| 临潭县| 合阳县| 东阿县| 阿拉善左旗| 蛟河市| 太白县| 许昌市| 孙吴县| 阿巴嘎旗| 钦州市| 隆尧县| 兴和县| 吉隆县| 农安县| 沁水县| 安阳县| 铁力市| 海伦市|