3rd Generation Partnership Project
Technical Specification Group Radio Access Network
Evolved Universal Terrestrial Radio Access [E-UTRA]
Physical Channels and Modulation
The software and hardware development fields Evolved along separate paths through the end of the 20th century. We seem to have come full circle, however. The previously rigid hardware on which our programs run is softening in many ways. Embedded systems are largely responsible for this softening. These hidden computing systems drive the electronic products around us, including consumer products like digital cameras and personal digital assistants, office automation equipment like copy machines and printers, medical devices like heart monitors and ventilators, and automotive electronics like cruise controls and antilock brakes.
Embedded systems force designers to work under incredibly tight time-tomarket, power consumption, size, performance, flexibility, and cost constraints.
Many technologies introduced over the past two decades have sought to help satisfy these constraints. To understand these technologies, it is important to first distinguish the underlying embedded systems elements.
Java technology has Evolved from a programming language designed to create
machine-independent embedded systems into a robust, vendor-independent,
machine-independent, server-side technology, enabling the corporate community
to realize the full potential of web-centric applications.
Java began with the release of the Java Development Kit (JDK). It was obv
Radio Frequency Integrated Circuit Design
I enjoyed reading this book for a number of reasons. One reason is that itaddresses high-speed analog design in the context of microwave issues. This isan advanced-level book, which should follow courses in basic circuits andtransmission lines. Most analog integrated circuit designers in the past workedon applications at low enough frequency that microwave issues did not arise.As a consequence, they were adept at lumped parameter circuits and often notcomfortable with circuits where waves travel in space. However, in order todesign radio frequency (RF) communications integrated circuits (IC) in thegigahertz range, one must deal with transmission lines at chip interfaces andwhere interconnections on chip are far apart. Also, impedance matching isaddressed, which is a topic that arises most often in microwave circuits. In mycareer, there has been a gap in comprehension between analog low-frequencydesigners and microwave designers. Often, similar issues were dealt with in twodifferent languages. Although this book is more firmly based in lumped-elementanalog circuit design, it is nice to see that microwave knowledge is brought inwhere necessary.Too many analog circuit books in the past have concentrated first on thecircuit side rather than on basic theory behind their application in communications.The circuits usually used have Evolved through experience, without asatisfying intellectual theme in describing them. Why a given circuit works bestcan be subtle, and often these circuits are chosen only through experience. Forthis reason, I am happy that the book begins first with topics that require anintellectual approach—noise, linearity and filtering, and technology issues. Iam particularly happy with how linearity is introduced (power series). In therest of the book it is then shown, with specific circuits and numerical examples,how linearity and noise issues arise.
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also Evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
This book Evolved over the past ten years from a set of lecture notes developed while teaching
the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching
this course Evolved tremendously over these years in a number of directions, partly to address
our students' background (undeveloped formal skills outside of programming), and partly to
reect the maturing of the eld in general, as we have come to see it. The notes increasingly
crystallized into a narrative, and we progressively structured the course to emphasize the
?story line? implicit in the progression of the material. As a result, the topics were carefully
selected and clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also Evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.