隨著信息技術和計算機技術的飛速發展,數字信號處理已經逐漸發展成一門關鍵的技術科學。圖像處理作為一種重要的現代技術,己經在通信、航空航天、遙感遙測、生物醫學、軍事、信息安全等領域得到廣泛的應用。圖像處理特別是高分辨率圖像實時處理的實現技術對相關領域的發展具有深遠意義。另外,現場可編程門陣列FPGA和高效率硬件描述語言Verilog HDL的結合,大大變革了電子系統的設計方法,加速了系統的設計進程,為圖像壓縮系統的實現提供了硬件支持和軟件保障。 本文主要包括以下幾個方面的內容: (1)結合某工程的具體需求,設計了一種基于FPGA的圖像壓縮系統,核心硬件選用XILINX公司的Virtex-Ⅱ Pro系列FPGA芯片,存儲器件選用MICRON公司的MT48LC4M16A2SDRAM,圖像壓縮的核心算法選用近無損壓縮算法JPEG-LS。 (2)用Verilog硬件描述語言實現了JPEG-LS標準中的基本算法,為課題組成員進行算法改進提供了有力支持。 (3)用Verilog硬件描述語言設計并實現了SDRAM控制器模塊,使核心壓縮模塊能夠方便靈活地訪問片外存儲器。 (4)構建了圖像壓縮系統的測試平臺,對實現的SDRAM控制器模塊和JPEG-LS基本算法模塊進行了軟件仿真測試和硬件測試,驗證了其功能的正確性。
上傳時間: 2013-04-24
上傳用戶:stampede
隨著 EDA 技術及微電子技術的飛速發展,現場可編程門陣列(Field Programmable Gate Array,簡稱 FPGA)的性能有了大幅度的提高,FPGA的設計水平也達到了一個新的高度。基于FPGA的嵌入式系統設計為現代電子產品設計帶來了更大的靈活性,以Nios Ⅱ軟核處理器為核心的SOPC(System on Programmable Chip)系統便是把嵌入式系統應用在FPGA上的典型例子,本文設計的指紋識別模塊就是基于FPGA的Nios Ⅱ處理器為核心的SOPC設計。通過IP核技術和靈活的軟硬件編程,實現Nios Ⅱ對FPGA外圍器件的控制,并對指紋處理算法進行了改進,研究了指紋識別算法到Nios Ⅱ系統的移植。 本文首先闡述了指紋識別模塊的SOPC設計方案,然后是對模塊的詳細設計。在硬件方面,完成了指紋識別模塊的 FPGA 硬件設計,包括 FPGA 內部的Nios Ⅱ系統硬件設計和 FPGA 外圍電路設計。前者利用 SOPC Builder將Nios Ⅱ處理器、指紋讀取接口 UART、鍵盤與LCD顯示接口、FLASH接口、SDRAM控制器構建成NiosⅡ硬件系統,后者是電源和時鐘電路、SDRAM存儲器電路、FLASH存儲器電路、LCD顯示電路、指紋傳感器電路、FPGA 配置電路這些純實物硬件設計,給出了設計方法和電路連接圖。 在軟件方面,包括下面兩個內容: 完成 FPGA 外圍器件程序設計,實現對外圍器件的操作。 深入的研究了指紋識別算法。對指紋圖像識別算法中的指紋圖像濾波和匹配算法進行了分析,提出了指紋圖像增強改進算法和匹配改進算法,通過試驗,改進后的指紋圖像濾波算法取得了較好的指紋圖像增強效果。改進后的匹配算法速度較快,誤識率較低。最后研究了指紋識別算法如何在FPGA中的Nios Ⅱ系統的實現。
上傳時間: 2013-06-12
上傳用戶:yx007699
雷達即無線電探測和測距。雷達裝在船上用于航行避讓、船舶定位和引航的稱為船用導航雷達。船用導航雷達是測定本船位置和預防沖撞事故所不可缺少的系統。它能夠準確捕獲其它船只、陸地、航線標志等物標信息,并將其顯示在顯示屏上。 本文圍繞船用導航雷達展開了研究,研究內容分為以下幾個部分: 首先介紹了雷達的概念、基本原理和主要應用,而且詳細敘述了船用導航雷達的發展和工作原理及特性。 然后根據雷達的基本原理和船用導航雷達的特點,設計了基于FPGA、ARM、DSP的船用導航雷達系統,并采用了DDR SDRAM存儲器。ARM、DSP和FPGA是當今主流的高速數字信號處理芯片,滿足了船用導航雷達系統的要求。 最后根據VGA顯示器的原理和雷達圖像的疊加原理,實現了基于FPGA的VGA雷達圖像疊加顯示,并得到了所需的雷達圖像。從結果可以看出,本系統的設計是符合要求的。
上傳時間: 2013-07-20
上傳用戶:dwzjt
隨著微電子技術的高速發展,實時圖像處理在多媒體、圖像通信等領域有著越來越廣泛的應用。FPGA就是硬件處理實時圖像數據的理想選擇,基于FPGA的圖像處理專用系統的研究將成為信息產業的新熱點。 本文詳細介紹了一種實時監控圖像處理系統的設計方案,實現了具有前端視頻采集系統、圖像預處理功能系統、圖像顯示系統。該系統采用Altera公司的FPGA芯片作為中央處理器,由視頻采集模塊、異步FIFO模塊、視頻解碼模塊、I
上傳時間: 2013-06-20
上傳用戶:wc412467303
隨著多媒體技術發展,數字圖像處理已經成為眾多應用系統的核心和基礎。圖像處理作為一種重要的現代技術,已經廣泛應用于軍事指揮、大視場展覽、跟蹤雷達、電視會議、導航等眾多領域。因而,實現高分辨率高幀率圖像實時處理的技術不僅具有廣泛的應用前景,而且對相關領域的發展也具有深遠意義。 大視場可視化系統由于屏幕尺寸很大,只有在特制的曲面屏幕上才能使細節得到充分地展現。為了在曲面屏幕上正確的顯示圖像,需要在投影前實時地對圖像進行幾何校正和邊緣融合。而現場可編程門陣列(FPGA)則是用硬件處理實時圖像數據的理想選擇,基于FPGA的圖像處理技術是世界范圍內廣泛關注的研究領域。 本課題的主要工作就是設計一個以FPGA為核心的硬件系統,該系統可對高分辨率高刷新率(1024*768@60Hz)的視頻圖像實時地進行幾何校正和邊緣融合。 論文首先介紹了圖像處理的幾何原理,然后提出了基于FPGA的大視場實時圖像融合處理系統的設計方案和模塊功能劃分。系統分為算法與軟件設計,硬件電路設計和FPGA邏輯設計三個大的部分。本論文主要負責FPGA的邏輯設計。圍繞FPGA的邏輯設計,論文先介紹了系統涉及的關鍵技術,以及使用Verilog語言進行邏輯設計的基本原則。 論文重點對FPGA內部模塊設計進行了詳細的闡述。仲裁與控制模塊是頂模塊的主體部分,主要實現系統狀態機和時序控制;參數表模塊主要實現SDRAM存儲器的控制器接口,用于圖像處理時讀取參數信息。圖像處理模塊是整個系統的核心,通過調用FPGA內嵌的XtremeDSP模塊,高速地完成對圖像數據的乘累加運算。最后論文提出并實現了一種基于PicoBlaze核的12C總線接口用于配置FPGA外圍芯片。 經過對寄存器傳輸級VerilogHDL代碼的綜合和仿真,結果表明,本文所設計的系統可以應用在大視場可視化系統中完成對高分辨率高幀率圖像的實時處理。
上傳時間: 2013-05-19
上傳用戶:戀天使569
數字信號發生器是數字信號處理中不可缺少的調試設備。在某工程項目中,為了提供特殊信號,比如雷達信號,就需要設計專用的數字信號發生器,用以達到發送雷達信號的要求。在本文中提出了使用PCI接口的專用數字信號發生器方案。 該方案的目標是能夠采錄雷達信號,把信號發送到主機作為信號文件存儲起來,然后對這個信號文件進行航跡分離,得到需要的航跡信號文件。同時,信號發生器具有發送信號的功能,可以把不同形式的信號文件發送到檢測端口,用于設備調試。 在本文中系統設計主要分為硬件和軟件兩個方面來介紹: 硬件部分采用了FPGA邏輯設計加上外圍電路來實現的。在硬件設計中,最主要的是FPGA邏輯設計,包括9路主從SPI接口信號的邏輯控制,片外SDRAM的邏輯控制,PCI9054的邏輯控制,以及這些邏輯模塊間信號的同步、發送和接收。在這個過程中信號的方向是雙向的,所選用的芯片都具有雙向數據的功能。 在本文中軟件部分包括驅動軟件和應用軟件。驅動軟件采用PLXSDK驅動開發,通過控制PCI總線完成數據的采錄和發送。應用軟件中包括數據提取和數據發送,采用卡爾曼濾波器等方法。 通過實驗證明該方案完全滿足數據傳輸的要求,達到SPI傳輸的速度要求,能夠完成航跡提取,以及數據傳輸。
上傳時間: 2013-07-03
上傳用戶:xzt
隨著人們對無線通信需求和質量的要求越來越高,無線通信設備的研發也變得越來越復雜,系統測試在整個設備研發過程中所占的比重也越來越大。為了能夠盡快縮短研發周期,測試人員需要在實驗室模擬出無線信道的各種傳播特性,以便對所設計的系統進行調試與測試。無線信道仿真器是進行無線通信系統硬件調試與測試不可或缺的儀器之一。 本文設計的無線信道仿真器是以Clarke信道模型為參考,采用基于Jakes模型的改進算法,使用Altera公司的StratixⅡ EP2S180模擬實現了頻率選擇性衰落信道。信道仿真器實現了四根天線數據的上行接收,每根天線由八條可分辨路徑,每條可分辨路徑由64個反射體構成,每根天線可分辨路徑和反射體的數目可以獨立配置。通過對每個反射體初始角度和初始相位的設置,并且保證反射體的角度和相位是均勻分布的隨機數,可以使得同一條路徑不同反射體之間的非相關特性,得到的多徑傳播信道是一個離散的廣義平穩非相關散射模型(WSSUS)。無線信道仿真器模擬了上行數據傳輸環境,上行數據由后臺產生后儲存在單板上的SDRAM中。啟動測試之后,上行數據在CPU的控制下通過信道仿真器,然后送達基帶處理板解調,最后測試數據的誤碼率和誤塊率,從而分析基站的上行接收性能。 首先,本文研究了3GPP TS 25.141協議中對通信設備測試的要求和無線信道自身的特點,完成了對無線信道仿真器系統設計方案的吸收和修改。 其次,針對FPGA內部資源結構,研究了信道仿真器FPGA實現過程中的困難和資源的消耗,進行了模塊劃分。主要完成了時延模塊、瑞利衰落模塊、背板接口模塊等的RTL級代碼的開發、仿真、綜合和板上調試;完成了FPGA和后臺軟件的聯合調試;完成了兩天線到四天線的改版工作,使FPGA內部的工作頻率翻了一倍,大幅降低了FPGA資源的消耗。 最后,在完成無線信道仿真器的硬件設計之后,對無線信道仿真器的測試根據3GPP TS 25.141 V6.13.0協議中的要求進行,即在數據誤塊率(BLER)一定的情況下,對不同信道傳播環境和不同傳輸業務下的信噪比(Eb/No)進行測試,單天線和多天線的測試結果符合協議中規定的信噪比(Eb/No)的要求。
上傳時間: 2013-04-24
上傳用戶:小楊高1
圖像處理技術應用越來越廣泛,特別是工業檢測領域。然而,圖像處理技術應用的基礎是圖像的獲取,為了更加靈活地設計各種應用產品,本課題研究基于FPGA的面陣 CCD驅動傳輸電路設計,利用該電路能夠獲取高質量、高分辨率的圖像,為后續的圖像處理技術應用打下基礎。本文首先介紹了研究意義、CCD圖像傳感器的發展以及FPGA的產生與發展,接著提出了面陣CCD成像系統總體設計方案,然后針對關鍵電路的設計進行詳盡的分析和說明,這些電路包括時序發生電路、存儲器控制電路、USB接口電路以及電源調理電路。其中時序發生電路主要用于產生CCD正常工作所需的各種時序信號以及A/D變換芯片AD9824 所需的工作時序,這些時序都是由FPGA產生的,文中給出了FPGA邏輯設計的基本過程以及仿真波形。本系統采用SDRAM緩存圖像信號,為了完成SDRAM的寫入、讀出以及定時刷新,利用FPGA生成存儲器控制電路。系統采用USB接口與計算機通信,因此FPGA 中設計了相應邏輯電路與CY7C68013A USB接口芯片實現信號握手及數據通信,進而與 PC機通信。為了保證各個芯片正常工作,設計電源調理電路實現將輸入5V電源轉換成多種電壓向各個芯片供電。經過初步調試,并根據仿真結果判斷驅動傳輸電路基本達到設計要求。關鍵詞:FPGA,CCD,A/D變換,SDRAM,USB,驅動時序
上傳時間: 2013-04-24
上傳用戶:prczsf
基于FPGA對sdram控制器的設計VERILOG語言
上傳時間: 2013-06-15
上傳用戶:lguotao
利用FPGA的51 ,IP核實現與單片機和ARM的串口通信
上傳時間: 2013-08-05
上傳用戶:lalaruby