基于單DSP的VoIP模擬電話適配器研究與實現:提出和實現了一種新穎的基于單個通用數字信號處理器(DSP)的VoIP模擬電話適配器方案。DSP的I/O和存儲資源非常有限,通常適于運算密集型應用,不適宜控制密集型應用[5]。該系統高效利用單DSP的I/O和片內外存儲器資源,采用μC/OS-II嵌入式實時操作系統,支持SIP和TCP-UDP/IP協議,通過LAN或者寬帶接入,使普通電話機成為Internet終端,實現IP電話。該系統軟硬件結構緊湊高效,運行穩定,成本低,具有廣闊的應用前景。關鍵詞:模擬電話適配器;IP電話;數字信號處理器;μC/OS-II
【Abstract】This paper presents a VoIP ATA solution based on a single digital signal processor (DSP). DSPs are suitable for arithmetic-intensiveapplication and unsuitable for control-intensive application because of the limitation of I/O and memory resources. This solution is based on a 16-bitfixed-point DSP and μC/OS-II embedded real-time operating system. It makes good use of the limited resources, supports SIP and TCP-UDP/IPprotocol. It can connect the analog telephone to Internet and realize the VoIP application. This system has a great future for its high efficiency andlow cost.【Key words】Analog telephone adapter (ATA); Voice over Internet protocol (VoIP); Digital signal processor (DSP); μC/OS-II
Research and Implementation of VoIPATA Based on Single DSP
基于LabVIEW和單片機的空調溫度場測量系統的研究:室內溫度是空調系統舒適性的重要指標,對其及時、準確地測量顯得非常重要。介紹單片機AT89C51 和數字式、單總線型溫度傳感器DS18B20 組成矩形測量網絡采集空調室內40 點溫度,LabVIEW作為開發平臺,二者之間通過串口實現數據通信,利用LabVIEW強大的數據處理和顯示功能對采集的空調溫度場數據進行實時處理、分析和顯示,詳細介紹了系統的硬件結構和軟件模塊的設計方案。關鍵詞:單片機;DS18B20 ;LabVIEW;串行通信
Abstract : Temperature is a very important criterion of air condition system′s comfort , so it is very significant to measure it accurately and real timely. This paper int roduces a data acquisition system of measuring 40 point s temperature for air condition room based on single wire digital sensor DS18B20 and microcont roller AT89C51 which are composed of rectangle measuring meshwork. The data communication between LabVIEW and microcont roller is executed via serial port ,and the temperature field data of air condition room are processed analyzed and displayed on LabVIEW. The hardware and software modules are also given in detail.Keywords : single chip ;DS18B20 ;LabVIEW; serial communication
In this document, the term Ô60xÕ is used to denote a 32-bit microprocessor from the PowerPC architecture family that conforms to the bus interface of the PowerPC 601ª, PowerPC 603ª, or PowerPC 604 microprocessors. Note that this does not include the PowerPC 602ª microprocessor which has a multiplexed address/data bus. 60x processors implement the PowerPC architecture as it is speciÞed for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types of 8, 16, and 32 bits,and ßoating-point data types of 32 and 64 bits (single-precision and double-precision).1.1 Overview The MPC106 provides an integrated high-bandwidth, high-performance, TTL-compatible interface between a 60x processor, a secondary (L2) cache or additional (up to four total) 60x processors, the PCI bus,and main memory. This section provides a block diagram showing the major functional units of the 106 and describes brießy how those units interact.Figure 1 shows the major functional units within the 106. Note that this is a conceptual block diagram intended to show the basic features rather than an attempt to show how these features are physically implemented on the device.
The STWD100 watchdog timer circuits are self-contained devices which prevent systemfailures that are caused by certain types of hardware errors (non-responding peripherals,bus contention, etc.) or software errors (bad code jump, code stuck in loop, etc.).The STWD100 watchdog timer has an input, WDI, and an output, WDO (see Figure 2). Theinput is used to clear the internal watchdog timer periodically within the specified timeoutperiod, twd (see Section 3: Watchdog timing). While the system is operating correctly, itperiodically toggles the watchdog input, WDI. If the system fails, the watchdog timer is notreset, a system alert is generated and the watchdog output, WDO, is asserted (seeSection 3: Watchdog timing).The STWD100 circuit also has an enable pin, EN (see Figure 2), which can enable ordisable the watchdog functionality. The EN pin is connected to the internal pull-downresistor. The device is enabled if the EN pin is left floating.
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities.
Abstract: Designers who must interface 1-Wire temperature sensors with Xilinx field-programmable gate arrays(FPGAs) can use this reference design to drive a DS28EA00 1-Wire slave device. The downloadable softwarementioned in this document can also be used as a starting point to connect other 1-Wire slave devices. The systemimplements a 1-Wire master connected to a UART and outputs temperature to a PC from the DS28EA00 temperaturesensor. In addition, high/low alarm outputs are displayed from the DS28EA00 PIO pins using LEDs.
The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain physical or conceptual entities.