Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
Abstract: The reality of modern, small Form-Factor ceramic capacitors is a good reminder to always readthe data sheet. This tutorial explains how ceramic capacitor type designations, such as X7R and Y5V,imply nothing about voltage coefficients. Engineers must check the data to know, really know, how aspecific capacitor will perform under voltage.
A major societal challenge for the decades to come will be the delivery of effective
medical services while at the same time curbing the growing cost of healthcare.
It is expected that new concepts-particularly electronically assisted healthcare will
provide an answer. This will include new devices, new medical services as well
as networking. On the device side, impressive innovation has been made possible
by micro- and nanoelectronics or CMOS Integrated Circuits. Even higher accuracy
and smaller form factor combined with reduced cost and increased convenience
of use are enabled by incorporation of CMOS IC design in the realization of biomedical
systems. The compact hearing aid devices and current pacemakers are
good examples of how CMOS ICs bring about these new functionalities and services
in the medical field. Apart from these existing applications, many researchers
are trying to develop new bio-medical solutions such as Artificial Retina, Deep
Brain Stimulation, and Wearable Healthcare Systems. These are possible by combining
the recent advances of bio-medical technology with low power CMOS IC
technology.