隨著科學(xué)水平的提高,生物、化學(xué)以及醫(yī)療相關(guān)器械領(lǐng)域?qū)纫笠苍诓粩嗟靥嵘?生物制劑提取、注射,化學(xué)藥品傳輸供給以及藥物治療等MEMS的研究不單單是對(duì)精密儀器的攻堅(jiān)克難,更是交叉學(xué)科賦予高精密儀器研究發(fā)展的難題。技術(shù)革新便要理論創(chuàng)新,才能突破現(xiàn)有技術(shù)發(fā)展的瓶頸。現(xiàn)有的壓電超聲波霧化器理論發(fā)展已頗具成熟,產(chǎn)業(yè)化發(fā)展也甚是豐富,可是由于產(chǎn)品的不斷創(chuàng)新?lián)Q代,同時(shí)也導(dǎo)致理論創(chuàng)新的不同步,致使許多創(chuàng)新產(chǎn)品缺少對(duì)應(yīng)的系統(tǒng)理論支持。本文立足微泵型壓電超聲波霧化器的研究,提出了系統(tǒng)的霧化理論、結(jié)構(gòu)仿真和霧化效果實(shí)驗(yàn)研究。本文主要的研究?jī)?nèi)容和成果如下:在霧化理論分析方面,通過對(duì)霧化片金屬基片和錐孔的變形公式推導(dǎo)分析,建立了微泵型壓電超聲波霧化器霧化理論數(shù)學(xué)模型,并結(jié)合變形分析對(duì)其霧化機(jī)理進(jìn)行了完整的闡述在有限元仿真分析計(jì)算方面,通過對(duì)霧化片簡(jiǎn)化建模,進(jìn)行了霧化片的諾響應(yīng)計(jì)算分析,得出霧化片諾響應(yīng)工作模態(tài)及其相應(yīng)振型。并結(jié)合霧化理論分析了各模態(tài)相應(yīng)霧化效果,提出霧化效果改進(jìn)意見。在霧化效果實(shí)驗(yàn)方面,進(jìn)行多普莉激光測(cè)振實(shí)驗(yàn),與諾響應(yīng)仿真計(jì)算相互論證,提高其可行性,并通過霧化效果實(shí)驗(yàn)來驗(yàn)證霧化效果理論分析結(jié)果,最后結(jié)合仿真計(jì)算和多普勒激光測(cè)振結(jié)果綜合分析、總結(jié)出霧化效果的影響因素。關(guān)鍵詞:MEMS,壓電泵,超聲波,霧化器,壓電陶瓷,振型。本文工作在機(jī)械結(jié)構(gòu)力學(xué)及控制國家重點(diǎn)實(shí)驗(yàn)室完成。
標(biāo)簽: 超聲波霧化器
上傳時(shí)間: 2022-06-18
上傳用戶:
超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動(dòng)的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會(huì)導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時(shí)換能器內(nèi)部動(dòng)態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時(shí)應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對(duì)按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對(duì)換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動(dòng)態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSPTMS320F2812為核心設(shè)計(jì)出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級(jí)可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時(shí),換能器工作在DPLL鎖定頻率上;動(dòng)態(tài)時(shí),逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價(jià)值。
標(biāo)簽: 動(dòng)態(tài)匹配換能器 超聲波電源
上傳時(shí)間: 2022-06-18
上傳用戶:
隨著微電子技術(shù)在汽車控制系統(tǒng)中的廣泛應(yīng)用,汽車總成中電子系統(tǒng)的作用顯得越來越重要,這種發(fā)展態(tài)勢(shì)對(duì)汽車發(fā)電系統(tǒng)提出了更高的要求。汽車電壓調(diào)節(jié)器是汽車發(fā)電系統(tǒng)的心臟部件,優(yōu)質(zhì)的電壓調(diào)節(jié)器是保證汽車電子系統(tǒng)高可靠性的重要前提。本文通過對(duì)大量電子電壓調(diào)節(jié)器的分析,提出了新的電壓調(diào)節(jié)器電路。在調(diào)節(jié)器的具體實(shí)現(xiàn)形式上采用單芯片集成方式,使其在電壓調(diào)節(jié)精度、體積、重量及耐振性等方面均優(yōu)于普通電子電壓調(diào)節(jié)器。文中還詳細(xì)分析了電壓調(diào)節(jié)器的的工作原理和電路結(jié)構(gòu),分塊設(shè)計(jì)了芯片內(nèi)部各個(gè)功能模塊,包括取樣電路、電壓基準(zhǔn)源、誤差放大器、保護(hù)電路和調(diào)整晶體管,給出所有晶體管級(jí)電路圖,并對(duì)各功能模塊進(jìn)行Spice模擬驗(yàn)證,模擬的結(jié)果及分析也一并給出。最后根據(jù)元器件在電路中的作用確定器件單元版圖結(jié)構(gòu),并介紹了版圖設(shè)計(jì)過程關(guān)鍵詞:汽車電子;調(diào)節(jié)器;調(diào)整管:雙極工藝汽車工業(yè)是一種高度綜合性的產(chǎn)業(yè)。現(xiàn)代汽車的發(fā)展形成了以計(jì)算機(jī)為頂端,半導(dǎo)體元器件為基礎(chǔ),光電測(cè)試為手段,集成電路為原料的新格局。近幾年以來電子點(diǎn)火,電子顯示,數(shù)字檢測(cè),電子轉(zhuǎn)向,電子鐘,電子音響,電磁操縱,空調(diào)等電子產(chǎn)品在我國汽車上得到了很大的發(fā)展和應(yīng)用[2],這種發(fā)展態(tài)勢(shì)對(duì)汽車發(fā)電系統(tǒng)提出了更高的要求,具體地說,用電系統(tǒng)不僅需要更大的供電能力,而且要求有更高的供電可靠性和供電質(zhì)量。作為一個(gè)能滿足這些要求的發(fā)電系統(tǒng),除了高性能的發(fā)電機(jī)及可靠的整流裝置外,還必需配備有高品質(zhì)的電壓調(diào)節(jié)器。為此,國內(nèi)外有關(guān)研究機(jī)構(gòu)及學(xué)者十分重視新型電子電壓調(diào)節(jié)器的研究與開發(fā).汽車發(fā)電系統(tǒng)的工作環(huán)境十分惡劣。相應(yīng)地,對(duì)作為其關(guān)鍵部件之一的電壓調(diào)節(jié)器的要求也很高。除要求電壓調(diào)節(jié)器具有優(yōu)良的電壓調(diào)節(jié)性能外,還有許多特殊的要求,如強(qiáng)的耐震性,寬的工作溫度范圍,耐化學(xué)腐蝕以及能承受超負(fù)荷狀態(tài)下的高壓、大電流沖擊等.
標(biāo)簽: 汽車電子 電壓調(diào)節(jié)器
上傳時(shí)間: 2022-06-19
上傳用戶:
本文以超音頻串聯(lián)諧振式感應(yīng)加熱電源為研究對(duì)象,應(yīng)用鎖相環(huán)和PID技術(shù),采用數(shù)字信號(hào)處理器(DSP)和復(fù)雜可編程邏輯器件(CPLD)聯(lián)合控制的數(shù)字化技術(shù)實(shí)現(xiàn)感應(yīng)加熱電源的頻率跟蹤和0~1800自由移相調(diào)功,為感應(yīng)加熱電源系統(tǒng)的數(shù)字化、信息化、柔性化、智能化控制提供了優(yōu)質(zhì)、可靠的技術(shù)基礎(chǔ)。論文首先介紹了感應(yīng)加熱的基本原理及感應(yīng)加熱技術(shù)的發(fā)展動(dòng)態(tài)。然后通過對(duì)感應(yīng)加熱電源中的主電路拓?fù)溥M(jìn)行分析,比較串聯(lián)譜振逆變電路與并聯(lián)諧振逆變電路的優(yōu)缺點(diǎn),選擇了更適合超音頻感應(yīng)加熱電源的串聯(lián)語振主電路。在確定了設(shè)計(jì)方案后,詳細(xì)分析了電源的主電路結(jié)構(gòu)并進(jìn)行了系統(tǒng)各組成部分器件的參數(shù)計(jì)算和選取。通過對(duì)鎖相環(huán)原理進(jìn)行了分析,提出一種基于DSP的數(shù)字鎖相環(huán)(DPLL)的實(shí)現(xiàn)方法。論文在分析和對(duì)比了感應(yīng)加熱電源的各種調(diào)功方式后,選擇了移相調(diào)功對(duì)感應(yīng)加熱電源進(jìn)行恒流調(diào)節(jié)。通過兩種硬件方案的對(duì)比,確定了一種最佳方案,實(shí)現(xiàn)了基準(zhǔn)臂與移相臂之間移相角的數(shù)字控制信號(hào)的產(chǎn)生。論文搭建了以TMS320LF2407A為控制核心的硬件控制平臺(tái)。包括了采樣電路、保護(hù)電路、驅(qū)動(dòng)電路、顯示電路等外圍電路。在此基礎(chǔ)上編制了系統(tǒng)的程序,完成了樣機(jī),并對(duì)其進(jìn)行了整機(jī)聯(lián)調(diào),給出了電源的實(shí)測(cè)波形。實(shí)驗(yàn)結(jié)果證明基于DSP的DPLL完全可以勝任超音頻的頻率跟蹤,系統(tǒng)硬件電路可靠,程序運(yùn)行良好。
上傳時(shí)間: 2022-06-19
上傳用戶:20125101110
【摘要】首先,文中指出一般對(duì)于“微弱信號(hào)”的理解有兩個(gè)方面的含義以及微弱信號(hào)檢測(cè)技術(shù)的應(yīng)用,提到了微弱信號(hào)檢測(cè)技術(shù)的首要任務(wù)是提高信噪比。文章介紹了一些傳統(tǒng)微弱量的檢測(cè)方法,詳細(xì)介紹了基于Duffing振子的混沌弱信號(hào)檢測(cè)方法。利用統(tǒng)計(jì)信號(hào)檢測(cè)的理論對(duì)混沌檢測(cè)系統(tǒng)的虛警概率、檢測(cè)概率和檢測(cè)信噪比進(jìn)行分析,進(jìn)而利用上述特性研究了混沌弱信號(hào)幅度的估計(jì)方法;本文還講述了Lyapunov指數(shù)的統(tǒng)計(jì)特性與弱信號(hào)檢測(cè)和估計(jì)之間的關(guān)系。【關(guān)鍵字】微弱信號(hào) 非線性 Duffing振子 信號(hào)檢測(cè)與估計(jì)1.1引言這些天在網(wǎng)上搜集了一些關(guān)于用非線性系統(tǒng)進(jìn)行微弱信號(hào)檢測(cè)的一些資料,讀了幾遍之后也若有所思。最初看的是基于非線性系統(tǒng)的微弱通信信號(hào)檢測(cè)關(guān)鍵技術(shù)研究的項(xiàng)目計(jì)劃申報(bào)書,老實(shí)說,讀第一遍時(shí)很多都是云里霧里,由于每天讀幾頁斷斷續(xù)續(xù)加上以前本科沒有接觸過這方面的內(nèi)容導(dǎo)致第一遍讀下來在腦海中并沒有形成整體的輪廓,但強(qiáng)烈的求知欲和好奇心讓我又讀了第二遍,接著看了混沌振子檢測(cè)引論,這才對(duì)非線性系統(tǒng)進(jìn)行微弱信號(hào)的檢測(cè)有了初步的認(rèn)識(shí)。
標(biāo)簽: 微弱信號(hào)檢測(cè)
上傳時(shí)間: 2022-06-19
上傳用戶:xsr1983
目前以IGBT為開關(guān)器件的串聯(lián)諧振感應(yīng)加熱電源在大功率和高頻下的研究是一個(gè)熱點(diǎn)和難點(diǎn),為彌補(bǔ)采用模擬電路搭建而成的控制系統(tǒng)的不足,對(duì)感應(yīng)加熱電源數(shù)字化控制研究是必然趨勢(shì)。本文以串聯(lián)諧振型感應(yīng)加熱電源為研究對(duì)象,采用T公司的TMS320F2812為控制芯片實(shí)現(xiàn)電源控制系統(tǒng)的數(shù)字化。首先分析了串聯(lián)諾振型感應(yīng)加熱電源的負(fù)載特性和調(diào)功方式,確定了采用相控整流調(diào)功控制方式,接著分析了串聯(lián)諾振逆變器在感性和容性狀態(tài)下的工作過程確定了系統(tǒng)安全可靠的運(yùn)行狀態(tài)。本文設(shè)計(jì)了電源主電路參數(shù)并在Matlab/Simulink仿真環(huán)境下搭建了整個(gè)系統(tǒng),仿真分析了串聯(lián)譜振型感應(yīng)加熱電源的半壓?jiǎn)?dòng)模式及鎖相環(huán)頻率跟蹤能力和功率調(diào)節(jié)控制。針對(duì)感應(yīng)加熱電源的數(shù)字控制系統(tǒng),在討論了晶閘管相控觸發(fā)和鎖相環(huán)的工作原理及研究現(xiàn)狀下詳細(xì)地分析了本課題基于DSP晶閘管相控脈沖數(shù)字觸發(fā)和數(shù)字鎖相環(huán)(DPL)的實(shí)現(xiàn),得出它們各自的優(yōu)越性,同時(shí)分析了感應(yīng)加熱電源的功率控制策略,得出了采用數(shù)字PI積分分離的控制方法。本文采用T1公司的TMS320F2812作為系統(tǒng)的控制芯片,搭建了控制系統(tǒng)的DSP外圍硬件電路,分析了系統(tǒng)的運(yùn)行過程并編寫了整個(gè)控制系統(tǒng)的程序。最后對(duì)控制系統(tǒng)進(jìn)行了試驗(yàn),驗(yàn)證了理論分析的正確性和控制方案的可行性。
標(biāo)簽: igbt 串聯(lián)諧振 電源
上傳時(shí)間: 2022-06-20
上傳用戶:
近年來,隨著個(gè)人數(shù)據(jù)通信的發(fā)展,功能強(qiáng)大的便攜式數(shù)據(jù)終端和多媒體終端得到了廣泛的應(yīng)用。為了實(shí)現(xiàn)用戶在任何時(shí)間、任何地點(diǎn)均能實(shí)現(xiàn)數(shù)據(jù)通信的目標(biāo),要求傳統(tǒng)的計(jì)算機(jī)網(wǎng)絡(luò)由有線向無線、由固定向移動(dòng)、由單一業(yè)務(wù)向多媒體發(fā)展,這一要求促進(jìn)了無線局域網(wǎng)技術(shù)的發(fā)展。在互聯(lián)網(wǎng)高速發(fā)展的今天,可以認(rèn)為無線局域網(wǎng)將成為未來的發(fā)展趨勢(shì).本課題采用TSMC 0.18um CMOS工藝實(shí)現(xiàn)用于IEEE 802.1la協(xié)議的5GHz無線局域網(wǎng)接收機(jī)射頻前端集成電路一包括低噪聲放大器(Low-Noise Amplifier,LNA)和下變頻器電路(Downconverter),低噪聲放大器是射頻接收機(jī)前端的主要部分,其作用是在盡可能少引入噪聲的條件下對(duì)天線接收到的微弱信號(hào)進(jìn)行放大。下變須器是接收機(jī)的重要組成部分,它將低噪聲放大器的輸出射頻信號(hào)與本振信號(hào)進(jìn)行混頻,產(chǎn)生中頻信號(hào)。論文對(duì)射頻前端集成電路的原理進(jìn)行了分析,比較了不同電路結(jié)構(gòu)的性能,給出了射頻前端集成電路的電路設(shè)計(jì)、版圖設(shè)計(jì)、仿真結(jié)果和測(cè)試方案,仿真結(jié)果表明,此次設(shè)計(jì)的射頻前端集成電路具有低噪聲、低功耗的特點(diǎn),其它性能也完全滿足設(shè)計(jì)指標(biāo)要求
標(biāo)簽: 無線局域網(wǎng) 接收機(jī)
上傳時(shí)間: 2022-06-20
上傳用戶:
論文的主要工作和研究成果可以概括為以下幾個(gè)方面:1,分析了微波射頻濾波器的基本原理,頻率變換規(guī)則。闡述了微波濾波器的新技術(shù)及其應(yīng)用.2,研究分析了螺旋濾波器的基本理論,設(shè)計(jì)了一種工作在VHF/UHF波段的螺旋腔體帶阻濾波器。論文以傳統(tǒng)的帶狀線帶阻濾波器作為著手點(diǎn),采用電容耦合短截線諧振結(jié)構(gòu),將同軸線諧振器變換成螺旋線結(jié)構(gòu),有效地縮小了濾波器的體積。3,提出了一種結(jié)構(gòu)新額的微帶平面結(jié)構(gòu)濾波器,采用雙模諧振器結(jié)構(gòu)形式。V/在輻射貼片上開十字交叉槽線來降低諧振頻率。濾波器的輸入輸出請(qǐng)振臂使用L形開路結(jié)構(gòu),帶外抑制非常好,高達(dá)-33dB,二次諧波被推移到基波的3倍頻以外。論文采用理論分析與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的設(shè)計(jì)理念。對(duì)螺旋腔體帶阻濾波器和雙模微帶帶通濾波器進(jìn)行了實(shí)物加工,實(shí)測(cè)結(jié)果與仿真結(jié)果相吻合.關(guān)鍵詞:射頻;濾波器;螺旋諧振器:雙模諧振器
標(biāo)簽: 射頻濾波器
上傳時(shí)間: 2022-06-20
上傳用戶:
本文首先介紹了衛(wèi)星導(dǎo)航接收機(jī)的發(fā)展現(xiàn)狀與趨勢(shì)。接著對(duì)比分析了現(xiàn)如今主流的接收機(jī)技術(shù):超外差式、零中頻式、低中頻式及數(shù)字中頻式結(jié)構(gòu),介紹了各結(jié)構(gòu)的拓?fù)浣Y(jié)構(gòu)并對(duì)比了相互之間的優(yōu)缺點(diǎn),然后根據(jù)B1導(dǎo)航信號(hào)的特征參數(shù)要求,確定本文接收機(jī)所采用低中頻結(jié)構(gòu)的技術(shù)指標(biāo)。結(jié)合選擇的芯片參數(shù)搭建系統(tǒng)仿真模型,利用系統(tǒng)仿真軟件ADS對(duì)接收機(jī)前端鏈路進(jìn)行行為級(jí)仿真,驗(yàn)證設(shè)計(jì)方案的可行性,分模塊設(shè)計(jì)了接收機(jī)前端系統(tǒng)的各功能電路,主要有多級(jí)低噪聲放大器、選頻濾波電路、本振電路、混頻器電路以及系統(tǒng)自動(dòng)增益控制電路。針對(duì)衛(wèi)星導(dǎo)航信號(hào)接收機(jī)前端必須具備高靈敏度、強(qiáng)選擇性以及一定動(dòng)態(tài)范圍的特點(diǎn),需要平衡設(shè)計(jì)低噪聲放大器噪聲性能與單級(jí)增益,以及折中接收機(jī)前端鏡像頻率抑制性能與信道的選擇性。利用仿真軟件輔助設(shè)計(jì)了電路原理圖與印刷電路板版圖,對(duì)其PCB貼片后進(jìn)行測(cè)試與調(diào)試。最后將調(diào)試好的模塊級(jí)聯(lián)成系統(tǒng),測(cè)試射頻前端系統(tǒng)的性能并加以冊(cè)NWL.Clogin.com最終實(shí)現(xiàn)的接收機(jī)射頻前端5V電壓供電,接收信號(hào)中心頻率1561.098MHz,鏈路最大增益為122dB,系統(tǒng)噪聲小于2dB.中頻信號(hào)中心頻率46.1MHz,帶寬為4.3MHz,紋波在1.5dB內(nèi),帶外抑制與鏡像抑制都大于30dB,端口駐波比小于2.0,測(cè)試結(jié)果基本滿足設(shè)計(jì)指標(biāo)要求。
標(biāo)簽: 北斗二代導(dǎo)航系統(tǒng) 接收機(jī) 射頻前端
上傳時(shí)間: 2022-06-20
上傳用戶:
本文首先對(duì)感應(yīng)加熱電源的發(fā)展現(xiàn)狀及前景作了分析,并闡述了感應(yīng)加熱的基本原理。從適用于大功率應(yīng)用場(chǎng)合的電流型并聯(lián)負(fù)載諧振逆變器出發(fā),對(duì)比了并聯(lián)諧振逆變器各種調(diào)功方式的優(yōu)缺點(diǎn),提出采用高頻Buck斬波器做為調(diào)節(jié)電源輸出功率的手段。文中重點(diǎn)對(duì)并聯(lián)諧振逆變器進(jìn)行分析,對(duì)比其各工作狀態(tài),指出為保證逆變器可靠運(yùn)行采用固定重疊角的控制策略,逆變器譜振負(fù)載工作在容性準(zhǔn)諧振狀態(tài);采用基于DSP的數(shù)字鎖相、頻率自動(dòng)跟蹤控制策略,逆變器開關(guān)頻率快速跟隨負(fù)載固有頻率的變化,諧振負(fù)載工作在所期望的弱容性準(zhǔn)諧振狀態(tài)。文中提出了一種精確計(jì)算輸出功率的方法,提高了電源的輸出控制精確度。本文詳細(xì)闡述了并聯(lián)型感應(yīng)加熱電源的設(shè)計(jì)過程,分析了主電路的設(shè)計(jì)方法以及關(guān)鍵器件的選型,控制系統(tǒng)采用T1公司的TMS320LF2407A DSP作為控制核心,設(shè)計(jì)了一種可靠的運(yùn)行保護(hù)機(jī)制,并對(duì)電源的散熱系統(tǒng)進(jìn)行了仿真設(shè)計(jì)。在上述分析的基礎(chǔ)上,本文成功研制出了一臺(tái)功率為60kw的高性能的并聯(lián)型中頻感應(yīng)加熱電源。試驗(yàn)結(jié)果表明,該電源的電氣性能達(dá)到了預(yù)期的指標(biāo)要求,有利于提高感應(yīng)加熱熱場(chǎng)的穩(wěn)定性,有利于提高感應(yīng)加熱的諧振頻率。
標(biāo)簽: igbt 感應(yīng)加熱電源
上傳時(shí)間: 2022-06-21
上傳用戶:
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1