Due to the asymmetry between the amount of data traffic in the downlink and
uplink direction of nowadays and future wireless networks, a proper design of the
transceivers in the broadcast channel is inevitable in order to satisfy the users’
demands on data rate and transmission quality. This book deals with the optimi-
zation-based joint design of the transmit and receive filters in a MIMO broadcast
channel in which the user terminals may be equipped with several antenna ele-
ments.
When we started thinking about writing this book, we had been working together for more
than five years on the borderline between propagation and signal processing.Therefore, it
is not surprising that this book deals with propagation models and design tools for MIMO
wirelesscommunications.Yet, thisbookshouldconstitutemorethanasimplecombination
of these two domains. It hopefully conveys our integrated understanding of MIMO, which
results from endless controversial discussions on various multi-antenna related issues, as
well as various interactions with numerous colleagues. Obviously, this area of technology
is so large that it was beyond our aim to cover all aspects in details. Rather, our goal has
been to provide researchers, R&D engineers and graduate students with a comprehensive
coverage of radio propagation models and space–time coding techniques.
The family of recent wireless standards included the optional employment of Multiple-Input
Multiple-Output(MIMO)techniques.This was motivatedby the observationaccordingto the
classic Shannon–Hartley law that the achievable channel capacity increases logarithmically
with the transmit power. In contrast, the MIMO capacity increases linearly with the number
of transmit antennas, provided that the number of receive antennas is equal to the number
of transmit antennas. With the further proviso that the total transmit power is increased in
proportion to the number of transmit antennas, a linear capacity increase is achieved upon
increasing the transmit power, which justifies the spectacular success of MIMO systems.
The family of recent wireless standards included the optional employment of MIMO tyechniques.
This was motivated by the observation according to the classic Shannon-Hartley law the achiev-
able channel capacity increases logarithmically with the transmit power. By contrast, the MIMO
capacity increases linearly with the number of transmit antennas, provided that the number of
receive antennas is equal to the number of transmit antennas.
The purpose of this book is to introduce the concept of the Multiple Input Multiple Output
(MIMO) radio channel, which is an intelligent communication method based upon using
multiple antennas. The book opens by explaining MIMO in layman’s terms to help stu-
dents and people in industry working in related areas become easily familiarised with the
concept. Therefore the structure of the book will be carefully arranged to allow a user to
progress steadily through the chapters and understand the fundamental and mathematical
principles behind MIMO through the visual and explanatory way in which they will be
written. It is the intention that several references will also be provided, leading to further
reading in this highly researched technology.