Many wireless communications channels consist of multiple signal paths from the
transmitter to receiver. This multiplicity of paths leads to a phenomenon known
as multipath fading. The multiple paths are caused by the presence of objects in the
physical environment that, through the mechanisms of propagation, alter the path of
radiated energy. These objects are referred to as scatterers. In the past, researchers
often looked at ways to mitigate multipath scattering, such as in diversity systems.
Multiple-input, multiple-output (MIMO) systems, on the other hand, use multipath
diversity to their advantage; a MIMO system has the ability to translate increased
spatial diversity into increased channel capacity.
A combined space鈥搕ime block coding (STBC) and eigen-space tracking
(EST) scheme in multiple-input-multiple-output systems is
proposed. It is proved that the STBC-EST is capable of shifting
hardware complexity from the receiver to the transmitter without
any bit error rate (BER) performance loss. A computation efficient
EST algorithm is also proposed, which makes the STBC-EST affordable.
Simulation results show that the STBC-EST with a modest
feedback requirement results in a negligible BER performance loss
compared with a dual system configuration.
Abstract: This document details the Lakewood (MAXREFDES7#) subsystem reference design, a 3.3V input, ±12V (±15V) output, isolated power supply. The Lakewood reference design includes a 3W primary-side transformer H-bridge driver for isolated supplies, and two wide input range and adjustable output low-dropout linear regulators (LDOs). Test results and hardware files are included.
Abstract: This document details the Riverside (MAXREFDES8#) subsystem reference design, a 3.3V input, 12V (15V) output, isolated power supply. The Riverside reference design includes a 3W primary-side transformer H-bridge driver for isolated supplies, and one wide input range and adjustable output low-dropout linear regulator (LDO). Test results and hardware files are included.
3rd Generation Partnership Project
Technical Specification Group Radio Access Network
Spatial channel model for
Multiple Input Multiple Output [MIMO] simulations