We describe and demonstrate an algorithm that takes as input an unorganized set of points fx1 xng IR3 on or near an unknown manifold M, and produces as Output a simplicial surface that approximates M. Neither the topology, the presence of boundaries, nor the geometry of M are assumed to be known in advance — all are inferred automatically from the data. This problem naturally arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from two-dimensional slices, and interactive surface sketching.
標簽: demonstrate unorganized algorithm describe
上傳時間: 2013-12-18
上傳用戶:xc216
Problem A:放蘋果 Time Limit:1000MS Memory Limit:65536K Total Submit:1094 Accepted:441 Language: not limited Description 把M個同樣的蘋果放在N個同樣的盤子里,允許有的盤子空著不放,問共有多少種不同的分法?(用K表示)5,1,1和1,5,1 是同一種分法。 Input 第一行是測試數據的數目t(0 <= t <= 20)。以下每行均包含二個整數M和N,以空格分開。1<=M,N<=10。 Output 對輸入的每組數據M和N,用一行輸出相應的K。 Sample Input 1 7 3 Sample Output 8
標簽: Limit Accepted Language Problem
上傳時間: 2016-11-30
上傳用戶:leixinzhuo
// chebysheve outlier detection // this function is used to detect the abnormal value among a set of data // input: // delta: a set of data // flag: discribe which data is already known as outlier // p: restrict level // Output: // double[] door : byyond which the data may be considered as a outlier // door[0]: the upperdoor // door[1]: the lowerdoor
標簽: chebysheve detection abnormal function
上傳時間: 2013-11-30
上傳用戶:13517191407
Flex chip implementation File: UP2FLEX JTAG jumper settings: down, down, up, up Input: Reset - FLEX_PB1 Input n - FLEX_SW switches 1 to 8 Output: Countdown - two 7-segment LEDs. Done light - decimal point on Digit1. Operation: Setup the binary input n number. Press the Reset switch. See the countdown from n down to 0 on the 7-segment LEDs. Done light lit when program terminates.
標簽: down implementation settings UP2FLEX
上傳時間: 2014-01-21
上傳用戶:sclyutian
N位同學站成一排,音樂老師要請其中的(N-K)位同學出列,使得剩下的K位同學排成合唱隊形。 合唱隊形是指這樣的一種隊形:設K位同學從左到右依次編號為1,2…,K,他們的身高分別為T1,T2,…,TK, 則他們的身高滿足T1 < T2 < ...< Ti > Ti+1 > … > TK (1 <= i <= K)。 你的任務是,已知所有N位同學的身高,計算最少需要幾位同學出列,可以使得剩下的同學排成合唱隊形。 Input 輸入包含若干個測試用例。 對于每個測試用例,輸入第一行是一個整數N(2<=N<=100),表示同學的總數。第二行有N個整數,用空格分隔,第i個整數Ti(130<=Ti<=230)是第i位同學的身高(厘米)。當輸入同學總數N為0時表示輸入結束。 Output 對于每個測試案例,輸出包括一行,這一行只包含一個整數,就是最少需要幾位同學出列。 Sample Input 8 186 186 150 200 160 130 197 220 3 150 130 140 0 Sample Output 4 1
標簽:
上傳時間: 2016-12-06
上傳用戶:jackgao
Description 將m個孩子從1到m編上號,按序號圍坐成一個圈,從1號孩子開始數,每數到n時,被數到的孩子即離開圈子,然后從下一個孩子開始,再從1開始數,如此不斷地數下去,只到只剩下最后一個孩子,問剩下的孩子是幾號? Input 輸入為一組整數對,每個整數對占一行,整數對的第一個整數表示m,即孩子的個數,第二個整數表示n,即被數到n的孩子將離開。 0<m<10000, n>0 輸入以0 0作為結束。 Output 每組整數對輸出一個結果整數,每個輸出占一行。 最后一行輸入0 0不產生輸出。
標簽: Description
上傳時間: 2016-12-09
上傳用戶:凌云御清風
Description 一個一元多項式可以看作由若干個一元單項式按降冪排列成的線性表。請編寫程序對輸入的兩個一元多項式求積,并輸出求積的結果。 Input 輸入為兩個一元多項式,每個一元多項式輸入一行,按照降冪依次輸入每個單項式的系數和指數,并以-1 -1作為結束。 系數和指數均為整數,指數不小于0。 Output 輸出為求積結果多項式,按照降冪依次輸出每個單項的系數和指數,每個數值后面用一個空格隔開,輸出結果多項式后換行。 系數為0的單項式不得輸出——除非結果多項式就是0,則直接輸出0。
標簽: Description 多項式 線性 程序
上傳時間: 2016-12-09
上傳用戶:sammi
k-step ahead predictions determined by simulation of the % one-step ahead neural network predictor. For NNARMAX % models the residuals are set to zero when calculating the % predictions. The predictions are compared to the observed Output. %
標簽: ahead predictions determined simulation
上傳時間: 2016-12-27
上傳用戶:busterman
% Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-Output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the Output layer.
標簽: Levenberg-Marquardt desired network neural
上傳時間: 2016-12-27
上傳用戶:jcljkh
Train a two layer neural network with a recursive prediction error % algorithm ("recursive Gauss-Newton"). Also pruned (i.e., not fully % connected) networks can be trained. % % The activation functions can either be linear or tanh. The network % architecture is defined by the matrix NetDef , which has of two % rows. The first row specifies the hidden layer while the second % specifies the Output layer.
標簽: recursive prediction algorithm Gauss-Ne
上傳時間: 2016-12-27
上傳用戶:ljt101007