The ever-increasing demand for private and sensitive data transmission over wireless net- works has made security a crucial concern in the current and future large-scale, dynamic, and heterogeneous wireless communication systems. To address this challenge, computer scientists and engineers have tried hard to continuously come up with improved crypto- graphic algorithms. But typically we do not need to wait too long to find an efficient way to crack these algorithms. With the rapid progress of computational devices, the current cryptographic methods are already becoming more unreliable. In recent years, wireless re- searchers have sought a new security paradigm termed PHYsical layer security. Unlike the traditional cryptographic approach which ignores the effect of the wireless medium, physi- cal layer security exploits the important characteristics of wireless channel, such as fading, interference, and noise, for improving the communication security against eavesdropping attacks. This new security paradigm is expected to complement and significantly increase the overall communication security of future wireless networks.
標簽: Communications PHYsical Security Wireless Layer in
上傳時間: 2020-05-31
上傳用戶:shancjb
新一代FPGA綜合技術,邏輯設計中出現的多個層次進行優化, 通過精簡邏輯層次,提升了電路性能,并且降低了功耗
標簽: Precision PHYsical 2010 2180
上傳時間: 2013-06-12
上傳用戶:jlyaccounts
·Advanced ASIC Chip Synthesis Using Synopsys Design Compiler,PHYsical Compiler and Primetime
標簽: nbsp Synthesis Advanced Synopsys
上傳時間: 2013-04-24
上傳用戶:alia
Sensors for pressure, load, temperature, acceleration andmany other PHYsical quantities often take the form of aWheatstone bridge. These sensors can be extremely linearand stable over time and temperature. However, mostthings in nature are only linear if you don’t bend them toomuch. In the case of a load cell, Hooke’s law states that thestrain in a material is proportional to the applied stress—as long as the stress is nowhere near the material’s yieldpoint (the “point of no return” where the material ispermanently deformed).
上傳時間: 2013-11-13
上傳用戶:墻角有棵樹
This document provides practical, common guidelines for incorporating PCI Express interconnect layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10- layer or more server baseboard designs. Guidelines and constraints in this document are intended for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI Express devices located on the same baseboard (chip-to-chip routing) and interconnects between a PCI Express device located “down” on the baseboard and a device located “up” on an add-in card attached through a connector. This document is intended to cover all major components of the PHYsical interconnect including design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card edge-finger and connector considerations. The intent of the guidelines and examples is to help ensure that good high-speed signal design practices are used and that the timing/jitter and loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect. However, while general PHYsical guidelines and suggestions are given, they may not necessarily guarantee adequate performance of the interconnect for all layouts and implementations. Therefore, designers should consider modeling and simulation of the interconnect in order to ensure compliance to all applicable specifications. The document is composed of two main sections. The first section provides an overview of general topology and interconnect guidelines. The second section concentrates on PHYsical layout constraints where bulleted items at the beginning of a topic highlight important constraints, while the narrative that follows offers additional insight.
上傳時間: 2013-10-15
上傳用戶:busterman
SDRAM的原理和時序 SDRAM內存模組與基本結構 我們平時看到的SDRAM都是以模組形式出現,為什么要做成這種形式呢?這首先要接觸到兩個概念:物理Bank與芯片位寬。1、 物理Bank 傳統內存系統為了保證CPU的正常工作,必須一次傳輸完CPU在一個傳輸周期內所需要的數據。而CPU在一個傳輸周期能接受的數 據容量就是CPU數據總線的位寬,單位是bit(位)。當時控制內存與CPU之間數據交換的北橋芯片也因此將內存總線的數據位寬 等同于CPU數據總線的位寬,而這個位寬就稱之為物理Bank(PHYsical Bank,下文簡稱P-Bank)的位寬。所以,那時的內存必須要組織成P-Bank來與CPU打交道。資格稍老的玩家應該還記 得Pentium剛上市時,需要兩條72pin的SIMM才能啟動,因為一條72pin -SIMM只能提供32bit的位寬,不能滿足Pentium的64bit數據總線的需要。直到168pin-SDRAM DIMM上市后,才可以使用一條內存開機。不過要強調一點,P-Bank是SDRAM及以前傳統內存家族的特有概念,RDRAM中將以通道(Channel)取代,而對 于像Intel E7500那樣的并發式多通道DDR系統,傳統的P-Bank概念也不適用。2、 芯片位寬 上文已經講到SDRAM內存系統必須要組成一個P-Bank的位寬,才能使CPU正常工作,那么這個P-Bank位寬怎么得到呢 ?這就涉及到了內存芯片的結構。 每個內存芯片也有自己的位寬,即每個傳輸周期能提供的數據量。理論上,完全可以做出一個位寬為64bit的芯片來滿足P-Ban k的需要,但這對技術的要求很高,在成本和實用性方面也都處于劣勢。所以芯片的位寬一般都較小。臺式機市場所用的SDRAM芯片 位寬最高也就是16bit,常見的則是8bit。這樣,為了組成P-Bank所需的位寬,就需要多顆芯片并聯工作。對于16bi t芯片,需要4顆(4×16bit=64bit)。對于8bit芯片,則就需要8顆了。以上就是芯片位寬、芯片數量與P-Bank的關系。P-Bank其實就是一組內存芯片的集合,這個集合的容量不限,但這個集合的 總位寬必須與CPU數據位寬相符。隨著計算機應用的發展,
上傳時間: 2013-11-04
上傳用戶:zhuimenghuadie
The TJA1042 is a high-speed CAN transceiver that provides an interface between aController Area Network (CAN) protocol controller and the PHYsical two-wire CAN bus.The transceiver is designed for high-speed (up to 1 Mbit/s) CAN applications in theautomotive industry, providing the differential transmit and receive capability to (amicrocontroller with) a CAN protocol controller.
標簽: High-speed transce 1042 TJA
上傳時間: 2014-12-28
上傳用戶:氣溫達上千萬的
The TJA1051 is a high-speed CAN transceiver that provides an interface between aController Area Network (CAN) protocol controller and the PHYsical two-wire CAN bus.The transceiver is designed for high-speed (up to 1 Mbit/s) CAN applications in theautomotive industry, providing differential transmit and receive capability to (amicrocontroller with) a CAN protocol controller.
標簽: High-speed transce 1051 TJA
上傳時間: 2013-10-17
上傳用戶:jisujeke
The Motorola MPC106 PCI bridge/memory controller provides a PowerPCªmicroprocessor common hardware reference platform (CHRPª) compliant bridgebetween the PowerPC microprocessor family and the Peripheral Component Interconnect(PCI) bus. In this document, the term Ô106Õ is used as an abbreviation for the phraseÔMPC106 PCI bridge/memory controllerÕ. This document contains pertinent PHYsicalcharacteristics of the 106. For functional characteristics refer to theMPC106 PCI Bridge/Memory Controller UserÕs Manual.This document contains the following topics:Topic PageSection 1.1, ÒOverviewÓ 2Section 1.2, ÒFeaturesÓ 3Section 1.3, ÒGeneral ParametersÓ 5Section 1.4, ÒElectrical and Thermal CharacteristicsÓ 5Section 1.5, ÒPin AssignmentsÓ 17Section 1.6, ÒPinout Listings 18Section 1.7, ÒPackage DescriptionÓ 22Section 1.8, ÒSystem Design InformationÓ 24Section 1.9, ÒDocument Revision HistoryÓ 29Section 1.10, ÒOrdering InformationÓ 29
上傳時間: 2013-11-04
上傳用戶:as275944189
The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point. Frequently the messages have meaning; that is they refer to or are correlated according to some system with certain PHYsical or conceptual entities.
標簽: 通信
上傳時間: 2013-10-31
上傳用戶:liuxinyu2016