This paper reviews key factors to practical ESD
protection design for RF and analog/mixed-signal (AMS) ICs,
including general challenges emerging, ESD-RFIC interactions,
RF ESD design optimization and prediction, RF ESD design
characterization, ESD-RFIC co-design technique, etc. Practical
design examples are discussed. It means to provide a systematic
and practical design flow for whole-chip ESD protection design
optimization and prediction for RF/AMS ICs to ensure 1 st Si
design success.
Over many years, RF-MEMS have been a hot topic in research at the technology
and device level. In particular, various kinds of mechanical Si-MEMS resonators
and piezoelectric BAW (bulk acoustic wave) resonators have been developed. The
BAW technology has made its way to commercial products for passive RF filters,
in particular for duplexers in RF transceiver front ends for cellular communica-
tions. Beyond their use in filters, micromachined resonators can also be used in
conjunction with active devices in innovative circuits and architectures.
GaN is an already well implanted semiconductor
technology, widely diffused in the LED optoelectronics
industry. For about 10 years, GaN devices have also been
developed for RF wireless applications where they can
replace Silicon transistors in some selected systems. That
incursion in the RF field has open the door to the power
switching capability in the lower frequency range and
thus to the power electronic applications.
Compared to Silicon, GaN exhibits largely better figures
for most of the key specifications: Electric field, energy
gap, electron mobility and melting point. Intrinsically,
GaN could offer better performance than Silicon in
terms of: breakdown voltage, switching frequency and
Overall systems efficiency.
This book was written by Michael Margolis with Nick Weldin to help you explore the
amazing things you can do with Arduino.
Arduino is a family of microcontrollers (tiny computers) and a software creation envi-
ronment that makes it easy for you to create programs (called sketches) that can interact
with the physical world. Things you make with Arduino can sense and respond to
touch, sound, position, heat, and light. This type of technology, often referred to as
physical computing, is used in all kinds of things, from the iPhone to automobile elec-
tronics systems. Arduino makes it possible for anyone—even people with no program-
ming or electronics experience—to use this rich and complex technology.
THIS PUBLICATION IS COPYRIGHT PROTECTEDCopyright ? 2014 IEC, Geneva, SwitzerlandAll rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any formor by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing fromeither IEC or IEC's member National Committee in the country of the requester. If you have any questions about IECcopyright or have an enquiry about obtaining additional rights to this publication, please contact the address below oryour local IEC member National Committee for further information.Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduiteni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopieet les microfilms, sans l'accord écrit de l'IEC ou du Comité national de l'IEC du pays du demandeur. Si vous avez desquestions sur le copyright de l'IEC ou si vous désirez obtenir des droits supplémentaires sur cette publication, utilisezles coordonnées ci-après ou contactez le Comité national de l'IEC de votre pays de résidence.