Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.
The introduction of Spartan-3™ devices has createdmultiple changes in the evolution of embedded controldesigns and pushed processing capabilities to the “almostfreestage.” With these new FPGAs falling under $20, involume, with over 1 million system gates, and under $5for 100K gate-level units, any design with programmablelogic has a readily available 8- or 16-bit processor costingless than 75 cents and 32-bit processor for less than $1.50.
Abstract: This reference design provides design ideas for a cost-effective, low-power liquid-level measurement dataacquisition system (DAS) using a compensated silicon pressure sensor and a high-precision delta-sigma ADC. Thisdocument discusses how to select the compensated silicon pressure sensor, suggest system algorithms, and providenoise analyses. It also describes calibration ideas to improve system performance while also reducing complexity andcost.
The LPC1850/30/20/10 are ARM Cortex-M3 based microcontrollers for embeddedapplications. The ARM Cortex-M3 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC1850/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals. The ARMCortex-M3 CPU also includes an internal prefetch unit that supports speculativebranching.The LPC1850/30/20/10 include up to 200 kB of on-chip SRAM data memory, a quad SPIFlash Interface (SPIFI), a State Configuration Timer (SCT) subsystem, two High-speedUSB controllers, Ethernet, LCD, an external memory controller, and multiple digital andanalog peripherals.
The LPC4350/30/20/10 are ARM Cortex-M4 based microcontrollers for embeddedapplications. The ARM Cortex-M4 is a next generation core that offers systemenhancements such as low power consumption, enhanced debug features, and a highlevel of support block integration.The LPC4350/30/20/10 operate at CPU frequencies of up to 150 MHz. The ARMCortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture withseparate local instruction and data buses as well as a third bus for peripherals, andincludes an internal prefetch unit that supports speculative branching. The ARMCortex-M4 supports single-cycle digital signal processing and SIMD instructions. Ahardware floating-point processor is integrated in the core.The LPC4350/30/20/10 include an ARM Cortex-M0 coprocessor, up to 264 kB of datamemory, advanced configurable peripherals such as the State Configurable Timer (SCT)and the Serial General Purpose I/O (SGPIO) interface, two High-speed USB controllers,Ethernet, LCD, an external memory controller, and multiple digital and analog peripherals