Abstract: A perfect voltage reference produces a stable voltage independent of any external factors. Real-world voltagereferences, of course, are subject to errors caused by many external factors. One causeof these major errors istemperature. Without care, it is easy to operate a voltage reference outside its operating temperature range. Thisapplication note describes how references respond to temperature changes, and how self-heating can cause a voltagereference to operate outside its recommended temperature range. Once understood, this knowledge can then be used toavoid making this design error.
Abstract: The DS4830 optical microcontroller's analog-to-digital converter (ADC) offset can change with temperature and gainselection. However, the DS4830 allows users to measure the ADC internal offset. The measured ADC offset is added to the ADCoffset register to nullify the offset error. This application note demonstrates the DS4830's ADC internal offset calibration in theapplication program.
Precision 16-bit analog outputs with softwareconfigurableoutput ranges are often needed in industrialprocess control equipment, analytical and scientificinstruments and automatic test equipment. In the past,designing a universal output module was a daunting taskand the cost and PCB real estate associated with thisfunction were problematic, if not prohibitive.
Digital-to-analog converters (DACs) are prevalent inindustrial control and automated test applications.General-purpose automated test equipment often requiresmany channels of precisely controlled voltagesthat span several voltage ranges. The LTC2704 is ahighly integrated 16-bit, 4-channel DAC for high-endapplications. It has a wide range of features designed toincrease performance and simplify design.
The 14-bit LTC2351-14 is a 1.5Msps, low power SARADC with six simultaneously sampled differential inputchannels. It operates from a single 3V supply and featuressix independent sample-and-hold amplifi ers and a singleADC. The single ADC with multiple S/HAs enables excellentrange match (1mV) between channels and channel-tochannelskew (200ps).
Many 8-bit and 16-bit microcontrollers feature 10-bitinternal ADCs. A few include 12-bit ADCs, but these oftenhave poor or nonexistent AC specifi cations, and certainlylack the performance to meet the needs of an increasingnumber of applications. The LTC®2366 and its slowerspeed versions offer a high performance alternative, asshown in the AC specifi cations in Table 1. Compare theseguaranteed specifi cations with the ADC built into yourcurrent microcontroller.
The STM32F10xxx microcontroller family embeds up to three advanced 12-bit ADCs (depending on the device) with a conversion time down to 1 μs. A self-calibration feature is provided to enhance ADC accuracy versus environmental condition changes.
This application note features 8-, 10-, and 12-bit dataacquisition components in various circuit configurations.The circuits include battery monitoring, temperature sensing,isolated serial interfaces, and microprocessor andmicrocontroller serial and parallel interfaces. Also includedare voltage reference circuits (Application Note 42contains more voltage reference circuits).