亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

bit-Error-Rate

  • 逐次逼近式AD轉(zhuǎn)換器研究

    A tutorial on SAR type A/D converters, this note contains detailed information on several 12-bit circuits. Comparator, clocking, and preamplifier designs are discussed. A final circuit gives a 12-bit conversion in 1.8µs. Appended sections explain the basic SAR technique and explore D/A considerations.

    標(biāo)簽: 逐次逼近 AD轉(zhuǎn)換器

    上傳時(shí)間: 2014-01-21

    上傳用戶:釣鰲牧馬

  • 用于信號(hào)調(diào)理的微電路

      Low power operation of electronic apparatus has becomeincreasingly desirable. Medical, remote data acquisition,power monitoring and other applications are good candidatesfor battery driven, low power operation. Micropoweranalog circuits for transducer-based signal conditioningpresent a special class of problems. Although micropowerICs are available, the interconnection of these devices toform a functioning micropower circuit requires care. (SeeBox Sections, “Some Guidelines for Micropower Designand an Example” and “Parasitic Effects of Test Equipmenton Micropower Circuits.”) In particular, trade-offs betweensignal levels and power dissipation become painful whenperformance in the 10-bit to 12-bit area is desirable.

    標(biāo)簽: 信號(hào)調(diào)理 微電路

    上傳時(shí)間: 2013-10-22

    上傳用戶:rocketrevenge

  • ADC轉(zhuǎn)換器技術(shù)用語 (A/D Converter Defi

    ANALOG INPUT BANDWIDTH is a measure of the frequencyat which the reconstructed output fundamental drops3 dB below its low frequency value for a full scale input. Thetest is performed with fIN equal to 100 kHz plus integer multiplesof fCLK. The input frequency at which the output is −3dB relative to the low frequency input signal is the full powerbandwidth.APERTURE JITTER is the variation in aperture delay fromsample to sample. Aperture jitter shows up as input noise.APERTURE DELAY See Sampling Delay.BOTTOM OFFSET is the difference between the input voltagethat just causes the output code to transition to the firstcode and the negative reference voltage. Bottom Offset isdefined as EOB = VZT–VRB, where VZT is the first code transitioninput voltage and VRB is the lower reference voltage.Note that this is different from the normal Zero Scale Error.CONVERSION LATENCY See PIPELINE DELAY.CONVERSION TIME is the time required for a completemeasurement by an analog-to-digital converter. Since theConversion Time does not include acquisition time, multiplexerset up time, or other elements of a complete conversioncycle, the conversion time may be less than theThroughput Time.DC COMMON-MODE ERROR is a specification which appliesto ADCs with differential inputs. It is the change in theoutput code that occurs when the analog voltages on the twoinputs are changed by an equal amount. It is usually expressed in LSBs.

    標(biāo)簽: Converter Defi ADC 轉(zhuǎn)換器

    上傳時(shí)間: 2013-11-12

    上傳用戶:pans0ul

  • 一種增益增強(qiáng)型套筒式運(yùn)算放大器的設(shè)計(jì)

    設(shè)計(jì)了一種用于高速ADC中的全差分套筒式運(yùn)算放大器.從ADC的應(yīng)用指標(biāo)出發(fā),確定了設(shè)計(jì)目標(biāo),利用開關(guān)電容共模反饋、增益增強(qiáng)等技術(shù)實(shí)現(xiàn)了一個(gè)可用于12 bit精度、100 MHz采樣頻率的高速流水線(Pipelined)ADC中的運(yùn)算放大器.基于SMIC 0.13 μm,3.3 V工藝,Spectre仿真結(jié)果表明,該運(yùn)放可以達(dá)到105.8 dB的增益,單位增益帶寬達(dá)到983.6 MHz,而功耗僅為26.2 mW.運(yùn)放在4 ns的時(shí)間內(nèi)可以達(dá)到0.01%的建立精度,滿足系統(tǒng)設(shè)計(jì)要求.

    標(biāo)簽: 增益 增強(qiáng)型 運(yùn)算放大器

    上傳時(shí)間: 2013-10-16

    上傳用戶:563686540

  • 使用時(shí)鐘PLL的源同步系統(tǒng)時(shí)序分析

    使用時(shí)鐘PLL的源同步系統(tǒng)時(shí)序分析一)回顧源同步時(shí)序計(jì)算Setup Margin = Min Clock Etch Delay – Max Data Etch Delay – Max Delay Skew – Setup TimeHold Margin = Min Data Etch Delay – Max Clock Etch Delay + Min Delay Skew + Data Rate – Hold Time下面解釋以上公式中各參數(shù)的意義:Etch Delay:與常說的飛行時(shí)間(Flight Time)意義相同,其值并不是從仿真直接得到,而是通過仿真結(jié)果的后處理得來。請(qǐng)看下面圖示:圖一為實(shí)際電路,激勵(lì)源從輸出端,經(jīng)過互連到達(dá)接收端,傳輸延時(shí)如圖示Rmin,Rmax,F(xiàn)min,F(xiàn)max。圖二為對(duì)應(yīng)輸出端的測試負(fù)載電路,測試負(fù)載延時(shí)如圖示Rising,F(xiàn)alling。通過這兩組值就可以計(jì)算得到Etch Delay 的最大和最小值。

    標(biāo)簽: PLL 時(shí)鐘 同步系統(tǒng) 時(shí)序分析

    上傳時(shí)間: 2013-11-05

    上傳用戶:VRMMO

  • 時(shí)鐘分相技術(shù)應(yīng)用

    摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79  文獻(xiàn)標(biāo)識(shí)碼:A   文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開頭有一個(gè)用于同步檢測的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過采樣 點(diǎn)依次相差90°相位。通過存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。

    標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用

    上傳時(shí)間: 2013-12-17

    上傳用戶:xg262122

  • DRAM內(nèi)存模塊的設(shè)計(jì)技術(shù)

    第二部分:DRAM 內(nèi)存模塊的設(shè)計(jì)技術(shù)..............................................................143第一章 SDR 和DDR 內(nèi)存的比較..........................................................................143第二章 內(nèi)存模塊的疊層設(shè)計(jì).............................................................................145第三章 內(nèi)存模塊的時(shí)序要求.............................................................................1493.1 無緩沖(Unbuffered)內(nèi)存模塊的時(shí)序分析.......................................1493.2 帶寄存器(Registered)的內(nèi)存模塊時(shí)序分析...................................154第四章 內(nèi)存模塊信號(hào)設(shè)計(jì).................................................................................1594.1 時(shí)鐘信號(hào)的設(shè)計(jì).......................................................................................1594.2 CS 及CKE 信號(hào)的設(shè)計(jì)..............................................................................1624.3 地址和控制線的設(shè)計(jì)...............................................................................1634.4 數(shù)據(jù)信號(hào)線的設(shè)計(jì)...................................................................................1664.5 電源,參考電壓Vref 及去耦電容.........................................................169第五章 內(nèi)存模塊的功耗計(jì)算.............................................................................172第六章 實(shí)際設(shè)計(jì)案例分析.................................................................................178 目前比較流行的內(nèi)存模塊主要是這三種:SDR,DDR,RAMBUS。其中,RAMBUS內(nèi)存采用阻抗受控制的串行連接技術(shù),在這里我們將不做進(jìn)一步探討,本文所總結(jié)的內(nèi)存設(shè)計(jì)技術(shù)就是針對(duì)SDRAM 而言(包括SDR 和DDR)。現(xiàn)在我們來簡單地比較一下SDR 和DDR,它們都被稱為同步動(dòng)態(tài)內(nèi)存,其核心技術(shù)是一樣的。只是DDR 在某些功能上進(jìn)行了改進(jìn),所以DDR 有時(shí)也被稱為SDRAM II。DDR 的全稱是Double Data Rate,也就是雙倍的數(shù)據(jù)傳輸率,但是其時(shí)鐘頻率沒有增加,只是在時(shí)鐘的上升和下降沿都可以用來進(jìn)行數(shù)據(jù)的讀寫操作。對(duì)于SDR 來說,市面上常見的模塊主要有PC100/PC133/PC166,而相應(yīng)的DDR內(nèi)存則為DDR200(PC1600)/DDR266(PC2100)/DDR333(PC2700)。

    標(biāo)簽: DRAM 內(nèi)存模塊 設(shè)計(jì)技術(shù)

    上傳時(shí)間: 2014-01-13

    上傳用戶:euroford

  • 可程式盤面型位數(shù)電表

    精確度0.05%滿刻度±1位數(shù)(Accuracy 0.05%F.S.±1digit) 可測量交直流電流/交直流電壓/電位計(jì)/傳送器/Pt-100/荷重元/電阻等信號(hào)(Measuring DCA/DCV/ACA/ACV/Potentiometer/Transmitter/Pt-100/Load Cell/Resistor/etc……) 顯示范圍0-19999可任意規(guī)劃(Programmable rate 0 to 1999 digit) 小數(shù)點(diǎn)可任意規(guī)劃(Decimal point can be modified) 尺寸小,穩(wěn)定性高(Dimension small & High stability)

    標(biāo)簽: 程式 數(shù)電

    上傳時(shí)間: 2014-01-25

    上傳用戶:RQB123

  • 微電腦型頻率隔離雙輸出傳送器

    特點(diǎn)(FEATURES) 精確度0.03%滿刻度(Accuracy 0.03%F.S.) 頻率輸入范圍0.01Hz至80KHz(Input range from 0.01 Hz to 80KHz) 16 BIT 隔離類比輸出(16 bit DAC isolating analog output) 輸入與輸出1/輸出2絕緣耐壓 2仟伏特/1分鐘(Dielectric strength 2KVac/1min.(input/output1/output2)) 寬范圍交直流兩用電源設(shè)計(jì)(Wide input range for auxiliary power) 尺寸小,穩(wěn)定性高(Dimension small & High stability)

    標(biāo)簽: 微電腦 傳送器 頻率 隔離

    上傳時(shí)間: 2013-10-21

    上傳用戶:dljwq

  • 微電腦型數(shù)學(xué)演算式雙輸出隔離傳送器

    特點(diǎn)(FEATURES) 精確度0.1%滿刻度 (Accuracy 0.1%F.S.) 可作各式數(shù)學(xué)演算式功能如:A+B/A-B/AxB/A/B/A&B(Hi or Lo)/|A| (Math functioA+B/A-B/AxB/A/B/A&B(Hi&Lo)/|A|/etc.....) 16 BIT 類比輸出功能(16 bit DAC isolating analog output function) 輸入/輸出1/輸出2絕緣耐壓2仟伏特/1分鐘(Dielectric strength 2KVac/1min. (input/output1/output2/power)) 寬范圍交直流兩用電源設(shè)計(jì)(Wide input range for auxiliary power) 尺寸小,穩(wěn)定性高(Dimension small and High stability)

    標(biāo)簽: 微電腦 數(shù)學(xué)演算 輸出 隔離傳送器

    上傳時(shí)間: 2013-11-24

    上傳用戶:541657925

主站蜘蛛池模板: 杨浦区| 海安县| 安庆市| 陵水| 神农架林区| 宁武县| 武川县| 平罗县| 兴业县| 炉霍县| 肥城市| 桓台县| 治县。| 赤水市| 洪洞县| 德保县| 溧水县| 汕头市| 正定县| 辰溪县| 陇南市| 海宁市| 浑源县| 广昌县| 高尔夫| 西青区| 衡南县| 贵南县| 甘南县| 达拉特旗| 东兴市| 德格县| 安多县| 耒阳市| 西盟| 江津市| 阳谷县| 贞丰县| 玉龙| 伊金霍洛旗| 博客|