DesignSpark PCB 第3版現(xiàn)已推出!
包括3種全新功能:
1. 模擬介面 Simulation Interface
2. 設(shè)計(jì)計(jì)算機(jī) Design Calculator
3. 零件群組 component Grouping
第3版新功能介紹 (含資料下載)
另外, 中文版的教學(xué)已經(jīng)準(zhǔn)備好了, 備有簡體和繁體版, 趕快下載來看看!
設(shè)計(jì)PCB產(chǎn)品激活:激活入品
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum。
This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.
針對嵌入式機(jī)器視覺系統(tǒng)向獨(dú)立化、智能化發(fā)展的要求,介紹了一種嵌入式視覺系統(tǒng)--智能相機(jī)。基于對智能相機(jī)體系結(jié)構(gòu)、組成模塊和圖像采集、傳輸和處理技術(shù)的分析,對國內(nèi)外的幾款智能相機(jī)進(jìn)行比較。綜合技術(shù)發(fā)展現(xiàn)狀,提出基于FPGA+DSP模式的硬件平臺,并提出智能相機(jī)的發(fā)展方向。分析結(jié)果表明,該系統(tǒng)設(shè)計(jì)可以實(shí)現(xiàn)脫離PC運(yùn)行,完成圖像獲取與分析,并作出相應(yīng)輸出。
Abstract:
This paper introduced an embedded vision system-intelligent camera ,which was for embedded machine vision systems to an independent and intelligent development requirements. Intelligent camera architecture, component modules and image acquisition, transmission and processing technology were analyzed. After comparing integrated technology development of several intelligent cameras at home and abroad, the paper proposed the hardware platform based on FPGA+DSP models and made clear direction of development of intelligent cameras. On the analysis of the design, the results indicate that the system can run from the PC independently to complete the image acquisition and analysis and give a corresponding output.
Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of
Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.