亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲(chóng)蟲(chóng)首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

iris-Segmentation

  • C++實(shí)現(xiàn)isodata聚類算法

    C++實(shí)現(xiàn)isodata聚類算法,基于IRIS數(shù)據(jù),

    標(biāo)簽: isodata 聚類算法

    上傳時(shí)間: 2016-08-07

    上傳用戶:CSUSheep

  • 一種通過(guò)自組織競(jìng)爭(zhēng)學(xué)習(xí)網(wǎng)絡(luò)實(shí)現(xiàn)數(shù)據(jù)降維和可視化的單層神經(jīng)網(wǎng)絡(luò)模型。用此算法可以把輸入空間的多維映射到低維的(一維或者二維)的離散網(wǎng)絡(luò)上

    一種通過(guò)自組織競(jìng)爭(zhēng)學(xué)習(xí)網(wǎng)絡(luò)實(shí)現(xiàn)數(shù)據(jù)降維和可視化的單層神經(jīng)網(wǎng)絡(luò)模型。用此算法可以把輸入空間的多維映射到低維的(一維或者二維)的離散網(wǎng)絡(luò)上,并將保持相同性質(zhì)的輸入數(shù)據(jù)在映射到低維空間時(shí)的拓?fù)湟恢滦浴ris以及l(fā)etter兩個(gè)數(shù)據(jù)集進(jìn)行分類

    標(biāo)簽: 網(wǎng)絡(luò) 自組織 數(shù)據(jù) 可視化

    上傳時(shí)間: 2016-09-03

    上傳用戶:Andy123456

  • 基于遺產(chǎn)算法的FCM算法

    基于遺產(chǎn)算法的FCM算法,且對(duì)iris標(biāo)準(zhǔn)數(shù)據(jù)集聚類,適用初學(xué)者。

    標(biāo)簽: FCM 算法

    上傳時(shí)間: 2013-12-19

    上傳用戶:lunshaomo

  • 模式識(shí)別分類器的設(shè)計(jì)

    模式識(shí)別分類器的設(shè)計(jì),此為K均值法源碼,經(jīng)調(diào)試通過(guò)。所用數(shù)據(jù)為標(biāo)準(zhǔn)IRIS。

    標(biāo)簽: 模式識(shí)別 分類器

    上傳時(shí)間: 2014-12-03

    上傳用戶:源碼3

  • 模式識(shí)別分類器的設(shè)計(jì)

    模式識(shí)別分類器的設(shè)計(jì),此為fisher法源碼,經(jīng)調(diào)試通過(guò)。所用數(shù)據(jù)為標(biāo)準(zhǔn)IRIS。

    標(biāo)簽: 模式識(shí)別 分類器

    上傳時(shí)間: 2014-01-16

    上傳用戶:silenthink

  • 模式識(shí)別分類器的設(shè)計(jì)

    模式識(shí)別分類器的設(shè)計(jì),此為L(zhǎng)MS法源碼,經(jīng)調(diào)試通過(guò)。所用數(shù)據(jù)為標(biāo)準(zhǔn)IRIS。

    標(biāo)簽: 模式識(shí)別 分類器

    上傳時(shí)間: 2014-01-15

    上傳用戶:cx111111

  • K-mean算法

    K-mean算法,并通過(guò)了IRIS數(shù)據(jù)的測(cè)試。

    標(biāo)簽: K-mean 算法

    上傳時(shí)間: 2013-12-18

    上傳用戶:shawvi

  • This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot se

    This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot sensors and 2) the difficulty of detecting buildings in monocular aerial images. With the suggested method building outlines can be detected faster than the mobile robot can explore the area by itself, giving the robot an ability to “see” around corners. At the same time, the approach can compensate for the absence of elevation data in segmentation of aerial images. Our experiments demonstrate that ground-level semantic information (wall estimates) allows to focus the segmentation of the aerial image to find buildings and produce a ground-level semantic map that covers a larger area than can be built using the onboard sensors.

    標(biāo)簽: simultaneously difficulties limitation addresses

    上傳時(shí)間: 2014-06-11

    上傳用戶:waitingfy

  • Semantic analysis of multimedia content is an on going research area that has gained a lot of atten

    Semantic analysis of multimedia content is an on going research area that has gained a lot of attention over the last few years. Additionally, machine learning techniques are widely used for multimedia analysis with great success. This work presents a combined approach to semantic adaptation of neural network classifiers in multimedia framework. It is based on a fuzzy reasoning engine which is able to evaluate the outputs and the confidence levels of the neural network classifier, using a knowledge base. Improved image segmentation results are obtained, which are used for adaptation of the network classifier, further increasing its ability to provide accurate classification of the specific content.

    標(biāo)簽: multimedia Semantic analysis research

    上傳時(shí)間: 2016-11-24

    上傳用戶:蟲(chóng)蟲(chóng)蟲(chóng)蟲(chóng)蟲(chóng)蟲(chóng)

  • 15篇光流配準(zhǔn)經(jīng)典文獻(xiàn)

    15篇光流配準(zhǔn)經(jīng)典文獻(xiàn),目錄如下: 1、A Local Approach for Robust Optical Flow Estimation under Varying 2、A New Method for Computing Optical Flow 3、Accuracy vs. Efficiency Trade-offs in Optical Flow Algorithms 4、all about direct methods 5、An Introduction to OpenCV and Optical Flow 6、Bayesian Real-time Optical Flow 7、Color Optical Flow 8、Computation of Smooth Optical Flow in a Feedback Connected Analog Network 9、Computing optical flow with physical models of brightness Variation 10、Dense estimation and object-based segmentation of the optical flow with robust techniques 11、Example Goal Standard methods Our solution Optical flow under 12、Exploiting Discontinuities in Optical Flow 13、Optical flow for Validating Medical Image Registration 14、Tutorial Computing 2D and 3D Optical Flow.pdf 15、The computation of optical flow

    標(biāo)簽: 光流

    上傳時(shí)間: 2014-11-21

    上傳用戶:fanboynet

主站蜘蛛池模板: 政和县| 衡南县| 华亭县| 平阴县| 微山县| 芦溪县| 长顺县| 高淳县| 乌拉特后旗| 诏安县| 阿坝县| 乐陵市| 隆德县| 襄汾县| 唐海县| 青岛市| 深圳市| 普兰县| 托里县| 南投市| 普定县| 澄迈县| 德令哈市| 新绛县| 贡山| 穆棱市| 石门县| 余姚市| 利川市| 靖边县| 梁山县| 云南省| 常山县| 南雄市| 东乌珠穆沁旗| 海兴县| 同心县| 江门市| 景谷| 崇礼县| 耿马|