對于初級C++學(xué)習(xí)者有些幫助的,H.M.Deitel,P.J.Deitel著。周靖等譯。效果可能有些不好
標(biāo)簽:
上傳時間: 2014-01-07
上傳用戶:xlcky
Lex helps write programs whose control flow is directed by instances of regular expressions in the input stream. It is well suited for editor-script type transformations and for segmenting input in preparation for a parsing routine.
標(biāo)簽: expressions instances directed programs
上傳時間: 2016-11-16
上傳用戶:時代電子小智
CMS4J 是 JAVA / JSP 版網(wǎng)站管理系統(tǒng) (Content Manage System For Java)的簡稱,讀作 “CMS For J” 國內(nèi) JAVA版網(wǎng)站管理系統(tǒng) 的領(lǐng)航者,依托于 JAVA 技術(shù),專注于 網(wǎng)站內(nèi)容管理 CMS4J絕非國外一些開源產(chǎn)品的改造版,我們秉承用戶本土化的原 則,切身體驗國內(nèi)CMS系統(tǒng)的應(yīng)用現(xiàn)狀與實際需求,為中小企業(yè)量身定 做,CMS4J項目在立項時,就已經(jīng)立下了以下四大目標(biāo): [目標(biāo) 1]: 不編程,做動態(tài)網(wǎng)站 要讓網(wǎng)站設(shè)計師、美工也會做動 態(tài)網(wǎng)站,動態(tài)網(wǎng)站不再是程序員的專長; [目標(biāo) 2]: 高擴展,插件式架構(gòu) 系統(tǒng)基于Plug-in結(jié)構(gòu),所有模 塊均插件化, 良好的二次開發(fā)接口; [目標(biāo) 3]: 小投資,低成本運營 讓網(wǎng)站可以低成本運營,絕對不 允許存在第三方不必要的軟件開支; [目標(biāo) 4]: 大應(yīng)用,分布式部署 立足日訪量為1至100百萬網(wǎng)站的 應(yīng)用,向千萬級大型綜合門戶應(yīng)用邁進;
標(biāo)簽: Content Manage System CMS4J
上傳時間: 2013-12-17
上傳用戶:dsgkjgkjg
PRINCIPLE: The UVE algorithm detects and eliminates from a PLS model (including from 1 to A components) those variables that do not carry any relevant information to model Y. The criterion used to trace the un-informative variables is the reliability of the regression coefficients: c_j=mean(b_j)/std(b_j), obtained by jackknifing. The cutoff level, below which c_j is considered to be too small, indicating that the variable j should be removed, is estimated using a matrix of random variables.The predictive power of PLS models built on the retained variables only is evaluated over all 1-a dimensions =(yielding RMSECVnew).
標(biāo)簽: from eliminates PRINCIPLE algorithm
上傳時間: 2016-11-27
上傳用戶:凌云御清風(fēng)
可以把客戶端的內(nèi)容存入數(shù)據(jù)庫中,在j網(wǎng)頁中顯示出來
標(biāo)簽: 數(shù)據(jù)庫
上傳時間: 2016-11-28
上傳用戶:13215175592
function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data, c) for i=1:max_iter if F(U)>0.98 break else w_new=eye(in_n,in_n) center1=sum(center)/c a=center1(1)./center1 deta=center-center1(ones(c,1),:) w=sqrt(sum(deta.^2)).*a for j=1:in_n w_new(j,j)=w(j) end data1=data*w_new [center, U, obj_fcn] = fcm(data1, c) center=center./w(ones(c,1),:) obj_fcn=obj_fcn/sum(w.^2) end end display(i) result=zeros(1,data_n) U_=max(U) for i=1:data_n for j=1:c if U(j,i)==U_(i) result(i)=j continue end end end
標(biāo)簽: data function Exponent obj_fcn
上傳時間: 2013-12-18
上傳用戶:ynzfm
function [U,V,num_it]=fcm(U0,X) % MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J. % Hathaway on June 21, 1994.) The fuzzification constant % m = 2, and the stopping criterion for successive partitions is epsilon =??????. %*******Modified 9/15/04 to have epsilon = 0.00001 and fix univariate bug******** % Purpose:The function fcm attempts to find a useful clustering of the % objects represented by the object data in X using the initial partition in U0.
標(biāo)簽: fcm function Version Routine
上傳時間: 2014-11-30
上傳用戶:二驅(qū)蚊器
兩臺處理機A 和B處理n個作業(yè)。設(shè)第i個作業(yè)交給機器 A 處理時需要時間ai,若由機器B 來處理,則需要時間bi。由于各作 業(yè)的特點和機器的性能關(guān)系,很可能對于某些i,有ai >=bi,而對于 某些j,j!=i,有aj<bj。既不能將一個作業(yè)分開由兩臺機器處理,也沒 有一臺機器能同時處理2 個作業(yè)。設(shè)計一個動態(tài)規(guī)劃算法,使得這兩 臺機器處理完成這n 個作業(yè)的時間最短(從任何一臺機器開工到最后 一臺機器停工的總時間)。研究一個實例:(a1,a2,a3,a4,a5,a6)= (2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)
上傳時間: 2014-01-14
上傳用戶:獨孤求源
Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等于m并且與m互質(zhì)的正整數(shù)的個數(shù)。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數(shù)篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數(shù)的個數(shù) 設(shè)n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數(shù)為n/p1, n/p2… 包含p1*p2, p2*p3…的個數(shù)為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
標(biāo)簽: Euler lt phi 函數(shù)
上傳時間: 2014-01-10
上傳用戶:wkchong
//Euler 函數(shù)前n項和 /* phi(n) 為n的Euler原函數(shù) if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對于約數(shù):divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數(shù)加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數(shù)條件 對于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數(shù)加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對于本題: 1. 篩素數(shù)的時候首先會判斷i是否是素數(shù)。 根據(jù)定義,當(dāng) x 是素數(shù)時 phi[x] = x-1 因此這里我們可以直接寫上 phi[i] = i-1 2. 接著我們會看prime[j]是否是i的約數(shù) 如果是,那么根據(jù)上述推導(dǎo),我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數(shù)的積性) 經(jīng)過以上改良,在篩完素數(shù)后,我們就計算出了phi[]的所有值。 我們求出phi[]的前綴和 */
標(biāo)簽: phi Euler else 函數(shù)
上傳時間: 2016-12-31
上傳用戶:gyq
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1