中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html
Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture
The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.
The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.
Some of the UltraScale architecture breakthroughs include:
• Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%
• Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability
• Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization
• 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard
• Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets
• Greatly enhanced DSP and packet handling
The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.
The CoolRunner-II CPLD is a highly uniform family of fast, low-power devices. Theunderlying architecture is a traditional CPLD architecture, combining macrocells intofunction blocks interconnected with a global routing matrix, the Xilinx AdvancedInterconnect Matrix (AIM). The function blocks use a PLA configuration that allowsall product terms to be routed and shared among any of the macrocells of the functionblock.
This document provides practical, common guidelines for incorporating PCI Express interconnect
layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10-
layer or more server baseboard designs. Guidelines and constraints in this document are intended
for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI
Express devices located on the same baseboard (chip-to-chip routing) and interconnects between
a PCI Express device located “down” on the baseboard and a device located “up” on an add-in
card attached through a connector.
This document is intended to cover all major components of the physical interconnect including
design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card
edge-finger and connector considerations. The intent of the guidelines and examples is to help
ensure that good high-speed signal design practices are used and that the timing/jitter and
loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect.
However, while general physical guidelines and suggestions are given, they may not necessarily
guarantee adequate performance of the interconnect for all layouts and implementations.
Therefore, designers should consider modeling and simulation of the interconnect in order to
ensure compliance to all applicable specifications.
The document is composed of two main sections. The first section provides an overview of
general topology and interconnect guidelines. The second section concentrates on physical layout
constraints where bulleted items at the beginning of a topic highlight important constraints, while
the narrative that follows offers additional insight.
An easy, yet highly-configurable iptables-based firewall solution designed for everybody from home users to network admins. Functionality for IPv6, tunneling, IPSec, and advanced routing is planned.
物流分析工具包。Facility location: Continuous minisum facility location, alternate location-allocation (ALA) procedure, discrete uncapacitated facility location
Vehicle routing: VRP, VRP with time windows, traveling salesman problem (TSP)
Networks: Shortest path, min cost network flow, minimum spanning tree problems
Geocoding: U.S. city or ZIP code to longitude and latitude, longitude and latitude to nearest city, Mercator projection plotting
Layout: Steepest descent pairwise interchange (SDPI) heuristic for QAP
Material handling: Equipment selection
General purpose: Linear programming using the revised simplex method, mixed-integer linear programming (MILP) branch and bound procedure
Data: U.S. cities with populations of at least 10,000, U.S. highway network (Oak Ridge National Highway Network), U.S. 3- and 5-digit ZIP codes
UWB 功率控制 容量
Main Matlab script is in runsim.m. It generates random topologies,
optimizes, and display results.
IMPORTANT: you may need to add manually the lib path in Matlab in order to
get all the necessary functions.
Reference: Radunovic, Le Boudec, "Joint Power Control, Scheduling and routing in UWB networks"
This document provides guidelines for integrating a discrete high speed USB host controller onto a fourlayer
desktop motherboard. The material covered can be broken into three main categories: Board design
guidelines, EMI/ESD guidelines and front panel USB guidelines. Section 1.1 Background provides an
explanation of the routing experiments and testing performed to validate the feasibility of 480 Megabits per
second on an actual motherboard. Section 7 contains a design checklist that lists each design
recommendation described in this document. High speed USB operation is described in the USB 2.0
Specification (http://www.usb.org/developers/docs.html).
This document provides guidelines for integrating a discrete high speed USB host controller onto a fourlayer
desktop motherboard. The material covered can be broken into three main categories: Board design
guidelines, EMI/ESD guidelines and front panel USB guidelines. Section 1.1 Background provides an
explanation of the routing experiments and testing performed to validate the feasibility of 480 Megabits per
second on an actual motherboard. Section 7 contains a design checklist that lists each design
recommendation described in this document. High speed USB operation is described in the USB 2.0
Specification (http://www.usb.org/developers/docs.html).