This application note provides a functional description of VHDL source code for a N x N DigitalCrosspoint Switch. The code is designed with eight inputs and eight outputs in order to targetthe 128-macrocell CoolRunner™-II CPLD device but can be easily expanded to target higherdensity devices. To obtain the VHDL source code described in this document, go to sectionVHDL Code, page 5 for instructions.
This application note describes the implementation of a two-dimensional Rank Order filter. Thereference design includes the RTL VHDL implementation of an efficient sorting algorithm. Thedesign is parameterizable for input/output precision, color standards, filter kernel size,maximum horizontal resolution, and implementation options. The rank to be selected can bemodified dynamically, and the actual horizontal resolution is picked up automatically from theinput synchronization signals. The design has a fully synchronous interface through the ce, clk,and rst ports.
為了在CDMA系統(tǒng)中更好地應(yīng)用QDPSK數(shù)字調(diào)制方式,在分析四相相對移相(QDPSK)信號調(diào)制解調(diào)原理的基礎(chǔ)上,設(shè)計了一種QDPSK調(diào)制解調(diào)電路,它包括串并轉(zhuǎn)換、差分編碼、四相載波產(chǎn)生和選相、相干解調(diào)、差分譯碼和并串轉(zhuǎn)換電路。在MAX+PLUSⅡ軟件平臺上,進(jìn)行了編譯和波形仿真。綜合后下載到復(fù)雜可編程邏輯器件EPM7128SLC84-15中,測試結(jié)果表明,調(diào)制電路能正確選相,解調(diào)電路輸出數(shù)據(jù)與QDPSK調(diào)制輸入數(shù)據(jù)完全一致,達(dá)到了預(yù)期的設(shè)計要求。
Abstract:
In order to realize the better application of digital modulation mode QDPSK in the CDMA system, a sort of QDPSK modulation-demodulation circuit was designed based on the analysis of QDPSK signal modulation-demodulation principles. It included serial/parallel conversion circuit, differential encoding circuit, four-phase carrier wave produced and phase chosen circuit, coherent demodulation circuit, difference decoding circuit and parallel/serial conversion circuit. And it was compiled and simulated on the MAX+PLUSⅡ software platform,and downloaded into the CPLD of EPM7128SLC84-15.The test result shows that the modulation circuit can exactly choose the phase,and the output data of the demodulator circuit is the same as the input data of the QDPSK modulate. The circuit achieves the prospective requirement of the design.
Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of
Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.
為了提高直接轉(zhuǎn)矩控制(DTC)系統(tǒng)定子磁鏈估計精度,降低電流、電壓測量的隨機(jī)誤差,提出了一種基于擴(kuò)展卡爾曼濾波(EKF)實(shí)現(xiàn)異步電機(jī)轉(zhuǎn)子位置和速度估計的方法。擴(kuò)展卡爾曼濾波器是建立在基于旋轉(zhuǎn)坐標(biāo)系下由定子電流、電壓、轉(zhuǎn)子轉(zhuǎn)速和其它電機(jī)參量所構(gòu)成的電機(jī)模型上,將定子電流、定子磁鏈、轉(zhuǎn)速和轉(zhuǎn)子角位置作為狀態(tài)變量,定子電壓為輸入變量,定子電流為輸出變量,通過對磁鏈和轉(zhuǎn)速的閉環(huán)控制提高定子磁鏈的估計精度,實(shí)現(xiàn)了異步電機(jī)的無速度傳感器直接轉(zhuǎn)矩控制策略,仿真結(jié)果驗(yàn)證了該方法的可行性,提高了直接轉(zhuǎn)矩的控制性能。
Abstract:
In order to improve the Direct Torque Control(DTC) system of stator flux estimation accuracy and reduce the current, voltage measurement of random error, a novel method to estimate the speed and rotor position of asynchronous motor based on extended Kalman filter was introduced. EKF was based on d-p axis motor and other motor parameters (state vector: stator current, stator flux linkage, rotor angular speed and position; input: stator voltage; output: staror current). EKF was designed for stator flux and rotor speed estimation in close-loop control. It can improve the estimated accuracy of stator flux. It is possible to estimate the speed and rotor position and implement asynchronous motor drives without position and speed sensors. The simulation results show it is efficient and improves the control performance.
Abstract: Many modern industrial, medical, and commercial applications require temperature measurements in the extended temperature rangewith accuracies of ±0.3°C or better, performed with reasonable cost and often with low power consumption. This article explains how platinumresistance temperature detectors (PRTDs) can perform measurements over wide temperature ranges of -200°C to +850°C, with absolute accuracyand repeatability better than ±0.3°C, when used with modern processors capable of resolving nonlinear mathematical equation quickly and costeffectively. This article is the second installment of a series on PRTDs. For the first installment, please read application note 4875, "High-Accuracy Temperature Measurements Call for Platinum Resistance Temperature Detectors (PRTDs) and Precision Delta-Sigma ADCs."
Accurate measurement of the third order intercept pointfor low distortion IC products such as the LT5514 requirescertain precautions to be observed in the test setup andtesting procedure. The LT5514 linearity performance ishigh enough to push the test equipment and test set-up totheir limits. A method for accurate measurement of thirdorder intermodulation products, IM3, with standard testequipment is outlined below.It is also important to correctly interpret the LT5514specification with respect to ROUT, and the impact ofdemo-board transmission-line termination loss whenevaluating the linearity performance, as explained in theLT5514 Datasheet and in Note 1 of this document.
Tug of War(A tug of war is to be arranged at the local office picnic. For the tug of war, the picnickers must be divided into two teams. Each person must be on one team or the other the number of people on the two teams must not differ by more than 1 the total weight of the people on each team should be as nearly equal as possible. The first line of input contains n the number of people at the picnic. n lines follow. The first line gives the weight of person 1 the second the weight of person 2 and so on. Each weight is an integer between 1 and 450. There are at most 100 people at the picnic. Your output will be a single line containing 2 numbers: the total weight of the people on one team, and the total weight of the people on the other team. If these numbers differ, give the lesser first. )