The 87LPC76X Microcontroller combines in a small package thebenefits of a high-performance microcontroller with on-boardhardware supporting the Inter-Integrated Circuit (I2C) bus interface.The 87LPC76X can be programmed both as an I2C bus master, aslave, or both. An overview of the I2C bus and description of the bussupport hardware in the 87LPC76X microcontrollers appears inapplication note AN464, Using the 87LPC76X Microcontroller as anI2C Bus Master. That application note includes a programmingexample, demonstrating a bus-master code. Here we show anexample of programming the microcontroller as an I2C slave.The code listing demonstrates communications routines for the87LPC76X as a slave on the I2C bus. It compliments the program inAN464 which demonstrates the 87LPC76X as an I2C bus master.One may demonstrate two 87LPC76X devices communicating witheach other on the I2C bus, using the AN464 code in one, and theprogram presented here in the other. The examples presented hereand in AN464 allow the 87LPC76X to be either a master or a slave,but not both. switchING between master and slave roles in amultimaster environment is described in application note AN435.The software for a slave on the bus is relatively simple, as theprocessor plays a relatively passive role. It does not initiate bustransfers on its own, but responds to a master initiating thecommunications. This is true whether the slave receives or transmitsdata—transmission takes place only as a response to a busmaster’s request. The slave does not have to worry about arbitrationor about devices which do not acknowledge their address. As theslave is not supposed to take control of the bus, we do not demandit to resolve bus exceptions or “hangups”. If the bus becomesinactive the processor simply withdraws, not interfering with themaster (or masters) on the bus which should (hopefully) try toresolve the situation.
為了擴大監控范圍,提高資源利用率,降低系統成本,提出了一種多通道視頻切換的解決方案。首先從視頻信號分離出行場信號,然后根據行場信號由DSP和FPGA產生控制信號,控制多路視頻通道之間的切換,從而實現讓一個視頻處理器同時監控不同場景。實驗結果表明,該方案可以在視頻監控告警系統中穩定、可靠地實現視頻通道的切換。
Abstract:
To expand the scope of monitoring, improve resource utilization, reduce system cost, a multiple video channels signal switchING method is pointed out in this paper. First, horizontal sync signal and field sync signal from the video signal are separated, then control signal according to the sync signal by DSP and FPGA is generated to control the switchING between multiple video channels. Thus, it achieves to make a video processor to monitor different place. Experimental results show that the method can realize video channel switchING reliably, and is applied in the video monitoring warning system successfully.
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switchING, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switchING, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering themethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
Integrated EMI/Thermal Design forswitchING Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of
Integrated EMI/Thermal Design forswitchING Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.
ATmega8 taillight circuitAn assembly language program that generates 5 different static patterns with switchING from pattern-to-pattern controlled by the depression of one push-button switch (S2).
The Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG are finalising a new standard for
the coding (compression) of natural video images. The new standard [1] will be known as H.264 and
also MPEG-4 Part 10, “Advanced Video Coding”. This document introduces the concepts of
switchING P and I slices, part of the Extended Profile of H.264.
This demonstration shows how a ZigBee coordinator can be set up. This demo allows
the Demonstration Board (PICDEM Z or Explorer 16) to act as either a "switchING Load
Controller" (e.g. a light) or a "switchING Remote Control" (e.g. a switch) as defined by
the Home Controls, Lighting profile. It is designed to interact with a second Demonstration
board programmed with the Demo RFD project