BC20-TE-B NB-Iot 評估板評估板原廠原理圖V1.2。完整對應(yīng)實(shí)物裝置。
上傳時間: 2022-06-17
上傳用戶:
HX711是一款專為高精度電子秤而設(shè)計(jì)的24位A/D轉(zhuǎn)換器芯片。與同類型其它芯片相比,該芯片集成了包括穩(wěn)壓電源、片內(nèi)時鐘振蕩器等其它同類型芯片所需要的外圍電路,具有集成度高、響應(yīng)速度快、抗干擾性強(qiáng)等優(yōu)點(diǎn)。降低了電子秤的整機(jī)成本,提高了整機(jī)的性能和可靠性。該芯片與后端MCU 芯片的接口和編程非常簡單,所有控制信號由管腳驅(qū)動,無需對芯片內(nèi)部的寄存器編程。輸入選擇開關(guān)可任意選取通道A 或通道B,與其內(nèi)部的低噪聲可編程放大器相連。通道A 的可編程增益為128 或64,對應(yīng)的滿額度差分輸入信號幅值分別為±20mV或±40mV。通道B 則為固定的64 增益,用于系統(tǒng)參數(shù)檢測。芯片內(nèi)提供的穩(wěn)壓電源可以直接向外部傳感器和芯片內(nèi)的A/D 轉(zhuǎn)換器提供電源,系統(tǒng)板上無需另外的模擬電源。芯片內(nèi)的時鐘振蕩器不需要任何外接器件。上電自動復(fù)位功能簡化了開機(jī)的初始化過程。
標(biāo)簽: hx711 A/D轉(zhuǎn)換器
上傳時間: 2022-07-24
上傳用戶:
資源包含以下內(nèi)容:1.三菱PLC A系列 AD 變換模塊A1S68AD.pdf2.三菱PLC A系列 CPU模塊Q2ASCPU.pdf3.三菱PLC A系列 DA 變換模塊A1S62DA .pdf4.三菱PLC A系列 GPPWLLT編程調(diào)試程序.pdf5.三菱PLC A系列 Io link 網(wǎng)絡(luò)系統(tǒng)模塊A1SJ51T64.pdf6.三菱PLC A系列 QnACPU 編程參考.pdf7.三菱PLC A系列 Q系列 CC-LINK網(wǎng)絡(luò)系統(tǒng).pdf8.三菱PLC A系列 余CPU模塊Q4ARCPU.pdf9.三菱PLC A系列 模擬輸入輸出模塊A1S66ADA.pdf10.三菱PLC A系列 熱電偶溫度數(shù)字變化模塊A1S68TD .pdf11.三菱PLC A系列 網(wǎng)絡(luò)系統(tǒng).pdf12.三菱PLC A系列 網(wǎng)絡(luò)系統(tǒng)設(shè)置.pdf13.三菱PLC A系列 遠(yuǎn)程網(wǎng)絡(luò)篇.pdf14.三菱PLC A系列 高速記數(shù)模塊A1SD62.pdf15.三菱PLC FX-20P-E手持編程器操作手冊.pdf16.三菱PLC FX1N使用手冊.pdf17.三菱PLC FX1S,F(xiàn)X1N,F(xiàn)X2N,F(xiàn)X2NC系列編程手冊.pdf18.三菱PLC FX2N-10GM和20GM硬件、編程手冊.pdf19.三菱PLC FX2N-10PG用戶手冊.pdf20.三菱PLC FX2N-2LC溫度控制模塊用戶手冊.pdf21.三菱PLC FX2N-5A特殊功能模塊用戶手冊.pdf22.三菱PLC FX2N使用手冊.pdf23.三菱PLC FX3U FX3UC編程手冊(基本)應(yīng)用指令說明書.pdf24.三菱PLC FX3UC使用手冊(硬件篇).pdf25.三菱PLC FX3U·FX3UC用戶手冊(定位控制篇).pdf26.三菱PLC FX3U·FX3UC用戶手冊(模擬量控制篇).pdf27.三菱PLC FX3U硬件手冊.pdf28.三菱PLC FX中文文字版002.pdf29.三菱PLC FX系列特殊功能模塊手冊b.pdf30.三菱PLC FX系列特殊功能模塊用戶手冊.pdf31.三菱PLC FX通訊用戶手冊.pdf32.三菱PLC QCPU用戶手冊(功能解說-程序基礎(chǔ)篇).pdf33.三菱PLC QCPU(Q系列)QnACPU編程手冊(PID控制指令篇).pdf34.三菱PLC QCPU-QnACPU 編程手冊(SFC 控制指令篇).pdf35.三菱PLC Q系列 +series+temperature+control+module+user+manual.pdf36.三菱PLC Q系列 CC-LinK Safety系統(tǒng) 主站模塊 詳細(xì)篇.pdf37.三菱PLC Q系列 CC-LINK SAFETY系統(tǒng)遠(yuǎn)程Io模塊 詳細(xì)篇.pdf38.三菱PLC Q系列 CC-Link數(shù)字模擬變換模塊.pdf39.三菱PLC Q系列 CC-Link本地站模塊.pdf40.三菱PLC Q系列 CC-link系統(tǒng)主站本地站模塊用戶手冊.pdf41.三菱PLC Q系列 CC-link系統(tǒng)小型IO模塊用戶手冊(詳細(xì)篇).pdf42.三菱PLC Q系列 CC-Link遠(yuǎn)程IO模塊.pdf43.三菱PLC Q系列 CPU 功能解說 程序基礎(chǔ).pdf44.三菱PLC Q系列 Fl net(OPCN-2)接口模塊用戶手冊.pdf45.三菱PLC Q系列 GX comfinurator-DP Version.pdf46.三菱PLC Q系列 G網(wǎng)絡(luò)系統(tǒng) 控制網(wǎng)絡(luò)篇.pdf47.三菱PLC Q系列 H網(wǎng)絡(luò)系統(tǒng) plc至plc網(wǎng)絡(luò).pdf48.三菱PLC Q系列 IO模塊用戶手冊.pdf49.三菱PLC Q系列 manual list price 2005-07.pdf50.三菱PLC Q系列 MELSEC通訊協(xié)議用戶手冊.pdf51.三菱PLC Q系列 MES接口模塊.pdf52.三菱PLC Q系列 PROFIBUS-DP從站模塊.pdf53.三菱PLC Q系列 PROFIBUS-DP接口模塊(詳細(xì)篇).pdf54.三菱PLC Q系列 Q62DA,Q64DA,Q68DAI,Q68DAV用戶手冊.pdf55.三菱PLC Q系列 Q62HLC用戶手冊.pdf56.三菱PLC Q系列 Q64RD 熱電阻輸入模塊用戶手冊.pdf57.三菱PLC Q系列 Q66DA-G用戶手冊(詳細(xì)篇).pdf58.三菱PLC Q系列 QCPU+Users+Manual(Hardware+Design).pdf59.三菱PLC Q系列 QCPU用戶手冊(多CPU系統(tǒng)).pdf60.三菱PLC Q系列 QD62,QD62D,QD62E用戶參考手冊.pdf61.三菱PLC Q系列 QD70定位模塊用戶手冊.pdf62.三菱PLC Q系列 QD72P3C3型內(nèi)置計(jì)數(shù)器功能定位模塊 詳細(xì)篇.pdf63.三菱PLC Q系列 QD75P定位模塊用戶手冊(硬件篇).pdf64.三菱PLC Q系列 QD75P定位模塊用戶手冊(詳細(xì)篇).pdf65.三菱PLC Q系列 QJ61CL12用戶手冊(詳細(xì)篇).pdf66.三菱PLC Q系列 QJ71PB92D用戶手冊(詳細(xì)篇).pdf67.三菱PLC Q系列 QJ71PB93D用戶手冊.pdf68.三菱PLC Q系列 QJ71WS96用戶手冊(詳細(xì)篇).pdf69.三菱PLC Q系列 QnACPU編程手冊 公共指令.pdf70.三菱PLC Q系列 QnACPU編程手冊(PID控制指令篇).pdf71.三菱PLC Q系列 QnAprogram(add).pdf72.三菱PLC Q系列 QnA編程手冊.pdf73.三菱PLC Q系列 QnPRHCPU用戶手冊冗余系統(tǒng)篇.pdf74.三菱PLC Q系列 QnPRHCPU編程手冊(過程控制指令).pdf75.三菱PLC Q系列 QS CPU 功能解說 程序基礎(chǔ)篇.pdf76.三菱PLC Q系列 QS CPU 硬件設(shè)計(jì) 維護(hù)點(diǎn)檢篇.pdf77.三菱PLC Q系列 QSCPU公共指令篇.pdf78.三菱PLC Q系列 Q基本模式CPU硬件設(shè)計(jì)保養(yǎng).pdf79.三菱PLC Q系列 Q系列H網(wǎng)主-從站使用手冊.pdf80.三菱PLC Q系列 Q系列I-O模塊使用手冊.pdf81.三菱PLC Q系列 Q系列MELSECNETH網(wǎng)絡(luò)系統(tǒng)參考手冊(遠(yuǎn)程IO網(wǎng)絡(luò)).pdf82.三菱PLC Q系列 Q系列MELSECNETH遠(yuǎn)程IO模塊.pdf83.三菱PLC Q系列 Q高性能CPU功能解說程序基礎(chǔ).pdf84.三菱PLC Q系列 SW0IVNT-CSKP通信包入門手冊.pdf85.三菱PLC Q系列 以太網(wǎng)模塊基礎(chǔ).pdf86.三菱PLC Q系列 以太網(wǎng)模塊用戶手冊(web功能篇).pdf87.三菱PLC Q系列 以太網(wǎng)(應(yīng)用篇).pdf88.三菱PLC Q系列 冗余系統(tǒng)用戶手冊.pdf89.三菱PLC Q系列 基本模式CPU功能解說程序基礎(chǔ)篇.pdf90.三菱PLC Q系列 多通道高速計(jì)數(shù)器模塊 詳細(xì)篇.pdf91.三菱PLC Q系列 安全應(yīng)用程序指南.pdf92.三菱PLC Q系列 定位模塊QD75P QD75D詳細(xì)篇.pdf93.三菱PLC Q系列 數(shù)模轉(zhuǎn)換模塊.pdf94.三菱PLC Q系列 模數(shù)轉(zhuǎn)換模塊 用戶手冊.pdf95.三菱PLC Q系列 模數(shù)轉(zhuǎn)換模塊.pdf96.三菱PLC Q系列 溫度控制模塊用戶手冊.pdf97.三菱PLC Q系列 熱電偶輸入模塊 通道絕緣形型電偶 微電壓輸入模塊.pdf98.三菱PLC Q系列 類串行口通信模塊 應(yīng)用篇.pdf99.三菱PLC Q系列 編程手冊(SFC).pdf100.三菱PLC Q系列 通信協(xié)議.pdf101.三菱PLC Q系列 高速計(jì)數(shù)器模塊.pdf102.三菱PLC Q系列(硬件設(shè)計(jì)維護(hù)點(diǎn)檢篇).pdf103.三菱PLC Q系類 串行口通信模塊 基礎(chǔ)篇.pdf104.三菱PLC X2N-16CCL-M和FX2N-32CCL CC-Link主站模塊和接口模塊用戶手冊.pdf105.三菱PLC X3U用戶手冊(硬件手冊).pdf106.伺服電機(jī)使用手冊Vol.2.pdf107.運(yùn)動控制器(實(shí)模式).pdf108.運(yùn)動控制器(虛模式).pdf109.運(yùn)動控制器使用手冊SFC編程手冊.pdf110.運(yùn)動控制器用戶手冊.pdf111.三菱PLC A系列、FX系列、Q系列資料合集
標(biāo)簽: 激光
上傳時間: 2013-04-15
上傳用戶:eeworm
心音信號是人體最重要的生理信號之一,包含心臟各個部分如心房、心室、大血管、心血管及各個瓣膜功能狀態(tài)的大量生理病理信息。心音信號分析與識別是了解心臟和血管狀態(tài)的一種不可缺少的手段。本文針對目前該研究領(lǐng)域中存在的分析方法問題和分類識別技術(shù)難點(diǎn)展開了深入的研究,內(nèi)容涉及心音構(gòu)成的分析、心音信號特征向量的提取、正常心音信號(NM)和房顫(AF)、主動脈回流(AR)、主動脈狹窄(AS)、二尖瓣回流(MR)4種心臟雜音信號的分類識別。本文的工作內(nèi)容包括以下5個方面: a)心音信號采集與預(yù)處理。本文采用自行研制的帶有錄音機(jī)功能的聽診器實(shí)現(xiàn)對心音信號的采集。通過對心音信號噪聲分析,選用小波降噪作為心音信號的濾波方法。根據(jù)實(shí)驗(yàn)分析,選擇Donoho閾值函數(shù)結(jié)合多級閾值的方法作為心音信號預(yù)處理方案。 b)心音信號時頻分析方法。文中采用5種時頻分析方法分別對心音信號進(jìn)行了時頻譜特性分析,結(jié)果表明:不同的時頻分析方法與待分析心音信號的特性有密切關(guān)系,即需要在小的交叉項(xiàng)干擾與高的時頻分辨率之間作綜合的考慮。鑒于此,本文提出了一種自適應(yīng)錐形核時頻(ATF)分析方法,通過實(shí)驗(yàn)驗(yàn)證該分布能較好地反映心音信號的時頻結(jié)構(gòu),其性能優(yōu)于一般錐形核分布(CKD)以及Choi-Williams分布(CWD)、譜圖(SPEC)等固定核時頻分析方法,從而選擇自應(yīng)錐形核時頻分析方法進(jìn)行心音信號分析。 c)心音信號特征向量提取。根據(jù)對3M Littmann() Stethoscopes[31]數(shù)據(jù)庫中標(biāo)準(zhǔn)心音信號的時頻分析結(jié)果,提取8組特征數(shù)據(jù),通過Fihser降維處理方法提取出了實(shí)現(xiàn)分類可視化,且最易于分類的心音信號的2維特征向量,作為心音信號分類的特征向量。 d)心音信號分類方法。根據(jù)心音信號特征向量組成的散點(diǎn)圖,研究了支持向量機(jī)核函數(shù)、多分類支持向量機(jī)的選取方法,同時,基于分類的目的 性和可信性,本文提出以分類精度最大為判斷準(zhǔn)則的核函數(shù)參數(shù)與松弛變量的優(yōu)化方法,建立了心音信號分類的支持向量機(jī)模型,選取標(biāo)準(zhǔn)數(shù)據(jù)庫中NM、AF、AR、AS、MR每類心音信號的80組2維特征向量中每類60組數(shù)據(jù)作為支持向量機(jī)的學(xué)習(xí)樣本,對余下的每類20組數(shù)據(jù)進(jìn)行測試,得到每類的分類精度(Ar)均為100%,同時對臨床上采集的與上述4種同類心臟雜音信號和正常心音信號中每類24個心動周期進(jìn)行分類實(shí)測,分類精度分別為:NM、AF、MR的分類精度均為100%,而AR、AS均為95.83%,驗(yàn)證了該方法的分類有效性。 e)心音信號分析與識別的軟件系統(tǒng)。本文以MATLAB語言的可視化功能實(shí)現(xiàn)了心音信號分析與識別的軟件運(yùn)行平臺構(gòu)建,可完成對心音信號的讀取、預(yù)處理,繪制時-頻、能量特性的三維圖及兩維等高線圖;同時,利用MATLAB與EXCEL的動態(tài)鏈接,實(shí)現(xiàn)對心音信號分析數(shù)據(jù)的存儲以及統(tǒng)計(jì)功能;最后,通過對心音信號2維特征向量的分析,實(shí)現(xiàn)心音信號的自動識別功能。 本文的研究特色主要體現(xiàn)在心音信號特征向量提取的方法以及多分類支持向量機(jī)模型的建立兩方面。 綜上所述,本文從理論與實(shí)踐兩方面對心音信號進(jìn)行了深入的研究,主要是采用自適應(yīng)錐形核時頻分析方法提取心音信號特征向量,根據(jù)心音信號特征向量組成的散點(diǎn)圖,建立心音信號分類的支持向量機(jī)模型,并對正常心音信號和4種心臟雜音信號進(jìn)行了分類研究,取得了較為滿意的分類結(jié)果,但由于用于分類的心臟雜音信號種類及數(shù)據(jù)量尚不足,因此,今后的工作重點(diǎn)是采集更多種類的心臟雜音信號,進(jìn)一步提高心音信號分類精度,使本文研究成果能最終應(yīng)用于臨床心臟量化聽診。 關(guān)鍵詞:心音信號,小波降噪,非平穩(wěn)信號,心臟雜音,信號處理,時頻分析,自適應(yīng),支持向量機(jī)
上傳時間: 2013-04-24
上傳用戶:weixiao99
本文分析了永磁同步直線電動機(jī)的運(yùn)行機(jī)理與運(yùn)行特性,并通過坐標(biāo)變換,分別得出了電機(jī)在a—b—c,α—β、d—q坐標(biāo)系下的數(shù)學(xué)模型。針對永磁同步直線電機(jī)模型的非線性與耦合特性,采用了次級磁場定向的矢量控制,并使id=0,不但解決了上述問題,還實(shí)現(xiàn)了最大推力電流比控制。為了獲得平穩(wěn)的推力,采用了SVPWM控制,并對它算法實(shí)現(xiàn)進(jìn)行了研究。 針對速度環(huán)采用傳統(tǒng)PID控制難以滿足高性能矢量控制系統(tǒng),通過對傳統(tǒng)PID控制和模糊控制理論的研究,將兩者相結(jié)合,設(shè)計(jì)出能夠在線自整定的模糊PID控制器。將該控制器代替?zhèn)鹘y(tǒng)的PID控制器應(yīng)用于速度環(huán),以提高系統(tǒng)的動靜態(tài)性能。 在以上分析的基礎(chǔ)上,設(shè)計(jì)了永磁同步直線電機(jī)矢量控制系統(tǒng)的軟、硬件。其中電流檢測采用了新穎的電流傳感器芯片IR2175,以解決溫漂問題;速度檢測采用了增量式光柵尺,設(shè)計(jì)了與DSP的接口電路,通過M/T法實(shí)現(xiàn)對電機(jī)的測速。最后在Matlab/Simlink下建立了電機(jī)及其矢量控制系統(tǒng)的仿真模型,并對分別采用傳統(tǒng)PID速度控制器和模糊PID速度控制器的系統(tǒng)進(jìn)行仿真,結(jié)果表明采用模糊PID控制具有更好的動態(tài)響應(yīng)性能,能有效的抑制暫態(tài)和穩(wěn)態(tài)下的推力脈動,對于負(fù)載擾動具有較強(qiáng)的魯棒性。
上傳時間: 2013-07-04
上傳用戶:13681659100
本書主要闡述設(shè)計(jì)射頻與微波功率放大器所需的理論、方法、設(shè)計(jì)技巧,以及將分析計(jì)算與計(jì)算機(jī)輔助設(shè)計(jì)相結(jié)合的優(yōu)化設(shè)計(jì)方法。這些方法提高了設(shè)計(jì)效率,縮短了設(shè)計(jì)周期。本書內(nèi)容覆蓋非線性電路設(shè)計(jì)方法、非線性主動設(shè)備建模、阻抗匹配、功率合成器、阻抗變換器、定向耦合器、高效率的功率放大器設(shè)計(jì)、寬帶功率放大器及通信系統(tǒng)中的功率放大器設(shè)計(jì)。 本書適合從事射頻與微波動功率放大器設(shè)計(jì)的工程師、研究人員及高校相關(guān)專業(yè)的師生閱讀。 作者簡介 Andrei Grebennikov是M/A—COM TYCO電子部門首席理論設(shè)計(jì)工程師,他曾經(jīng)任教于澳大利亞Linz大學(xué)、新加坡微電子學(xué)院、莫斯科通信和信息技術(shù)大學(xué)。他目前正在講授研究班課程,在該班上,本書作為國際微波年會論文集。 目錄 第1章 雙口網(wǎng)絡(luò)參數(shù) 1.1 傳統(tǒng)的網(wǎng)絡(luò)參數(shù) 1.2 散射參數(shù) 1.3 雙口網(wǎng)絡(luò)參數(shù)間轉(zhuǎn)換 1.4 雙口網(wǎng)絡(luò)的互相連接 1.5 實(shí)際的雙口電路 1.5.1 單元件網(wǎng)絡(luò) 1.5.2 π形和T形網(wǎng)絡(luò) 1.6 具有公共端口的三口網(wǎng)絡(luò) 1.7 傳輸線 參考文獻(xiàn) 第2章 非線性電路設(shè)計(jì)方法 2.1 頻域分析 2.1.1 三角恒等式法 2.1.2 分段線性近似法 2.1.3 貝塞爾函數(shù)法 2.2 時域分析 2.3 NewtOn.Raphscm算法 2.4 準(zhǔn)線性法 2.5 諧波平衡法 參考文獻(xiàn) 第3章 非線性有源器件模型 3.1 功率MOSFET管 3.1.1 小信號等效電路 3.1.2 等效電路元件的確定 3.1.3 非線性I—V模型 3.1.4 非線性C.V模型 3.1.5 電荷守恒 3.1.6 柵一源電阻 3.1.7 溫度依賴性 3.2 GaAs MESFET和HEMT管 3.2.1 小信號等效電路 3.2.2 等效電路元件的確定 3.2.3 CIJrtice平方非線性模型 3.2.4 Curtice.Ettenberg立方非線性模型 3.2.5 Materka—Kacprzak非線性模型 3.2.6 Raytheon(Statz等)非線性模型 3.2.7 rrriQuint非線性模型 3.2.8 Chalmers(Angek)v)非線性模型 3.2.9 IAF(Bemth)非線性模型 3.2.10 模型選擇 3.3 BJT和HBT汀管 3.3.1 小信號等效電路 3.3.2 等效電路中元件的確定 3.3.3 本征z形電路與T形電路拓?fù)渲g的等效互換 3.3.4 非線性雙極器件模型 參考文獻(xiàn) 第4章 阻抗匹配 4.1 主要原理 4.2 Smith圓圖 4.3 集中參數(shù)的匹配 4.3.1 雙極UHF功率放大器 4.3.2 M0SFET VHF高功率放大器 4.4 使用傳輸線匹配 4.4.1 窄帶功率放大器設(shè)計(jì) 4.4.2 寬帶高功率放大器設(shè)計(jì) 4.5 傳輸線類型 4.5.1 同軸線 4.5.2 帶狀線 4.5.3 微帶線 4.5.4 槽線 4.5.5 共面波導(dǎo) 參考文獻(xiàn) 第5章 功率合成器、阻抗變換器和定向耦合器 5.1 基本特性 5.2 三口網(wǎng)絡(luò) 5.3 四口網(wǎng)絡(luò) 5.4 同軸電纜變換器和合成器 5.5 wilkinson功率分配器 5.6 微波混合橋 5.7 耦合線定向耦合器 參考文獻(xiàn) 第6章 功率放大器設(shè)計(jì)基礎(chǔ) 6.1 主要特性 6.2 增益和穩(wěn)定性 6.3 穩(wěn)定電路技術(shù) 6.3.1 BJT潛在不穩(wěn)定的頻域 6.3.2 MOSFET潛在不穩(wěn)定的頻域 6.3.3 一些穩(wěn)定電路的例子 6.4 線性度 6.5 基本的工作類別:A、AB、B和C類 6.6 直流偏置 6.7 推挽放大器 6.8 RF和微波功率放大器的實(shí)際外形 參考文獻(xiàn) 第7章 高效率功率放大器設(shè)計(jì) 7.1 B類過激勵 7.2 F類電路設(shè)計(jì) 7.3 逆F類 7.4 具有并聯(lián)電容的E類 7.5 具有并聯(lián)電路的E類 7.6 具有傳輸線的E類 7.7 寬帶E類電路設(shè)計(jì) 7.8 實(shí)際的高效率RF和微波功率放大器 參考文獻(xiàn) 第8章 寬帶功率放大器 8.1 Bode—Fan0準(zhǔn)則 8.2 具有集中元件的匹配網(wǎng)絡(luò) 8.3 使用混合集中和分布元件的匹配網(wǎng)絡(luò) 8.4 具有傳輸線的匹配網(wǎng)絡(luò) 8.5 有耗匹配網(wǎng)絡(luò) 8.6 實(shí)際設(shè)計(jì)一瞥 參考文獻(xiàn) 第9章 通信系統(tǒng)中的功率放大器設(shè)計(jì) 9.1 Kahn包絡(luò)分離和恢復(fù)技術(shù) 9.2 包絡(luò)跟蹤 9.3 異相功率放大器 9.4 Doherty功率放大器方案 9.5 開關(guān)模式和雙途徑功率放大器 9.6 前饋線性化技術(shù) 9.7 預(yù)失真線性化技術(shù) 9.8 手持機(jī)應(yīng)用的單片cMOS和HBT功率放大器 參考文獻(xiàn)
標(biāo)簽: 射頻 微波功率 放大器設(shè)計(jì)
上傳時間: 2013-04-24
上傳用戶:W51631
在現(xiàn)代交流伺服系統(tǒng)中,矢量控制原理以及空間電壓矢量脈寬調(diào)制(SVPWM)技術(shù)使得交流電機(jī)能夠獲得和直流電機(jī)相媲美的性能。永磁同步電機(jī)(PMSM)是一個復(fù)雜耦合的非線性系統(tǒng)。本文在Matlab/Simulink環(huán)境下,通過對PMSM本體、d/q坐標(biāo)系向a/b/c坐標(biāo)系轉(zhuǎn)換等模塊的建立與組合,構(gòu)建了永磁同步電機(jī)控制系統(tǒng)仿真模型。仿真結(jié)果證明了該系統(tǒng)模型的有效性。
標(biāo)簽: MatlabSimulink PMSM 永磁同步電機(jī)
上傳時間: 2013-04-24
上傳用戶:liansi
運(yùn)動控制技術(shù)是機(jī)電一體化的核心部分,提高運(yùn)動控制技術(shù)水平對于提高我國的機(jī)電一體化技術(shù)具有至關(guān)重要的作用。運(yùn)動控制技術(shù)的發(fā)展是制造自動化前進(jìn)的旋律,是推動新的產(chǎn)業(yè)革命的關(guān)鍵技術(shù)。對于數(shù)控系統(tǒng)來說,最重要的是控制各個電機(jī)軸的運(yùn)動,這是運(yùn)動控制器接收并依照數(shù)控裝置的指令來控制各個電機(jī)軸運(yùn)動從而實(shí)現(xiàn)數(shù)控加工的,數(shù)據(jù)加工中的定位控制精度、速度調(diào)節(jié)的性能等重要指標(biāo)都與運(yùn)動控制器直接相關(guān)。目前對數(shù)控系統(tǒng)的研究都集中在插入PC的NC控制器的研究上,而其核心部分就是對步進(jìn)、伺服電機(jī)進(jìn)行控制的運(yùn)動控制卡的研究。對PC-NC來說,運(yùn)動控制卡的性能很大程度上決定了整個數(shù)控系統(tǒng)的性能,而微電子和數(shù)字信號處理技術(shù)的發(fā)展及其應(yīng)用,使運(yùn)動控制卡的性能得到了不斷改進(jìn),集成度和可靠性大大提高。 本課題通過對運(yùn)動控制技術(shù)的深入研究,并針對國內(nèi)運(yùn)動控制技術(shù)的研究起步較晚的現(xiàn)狀,結(jié)合當(dāng)前運(yùn)動控制領(lǐng)域的具體需要,緊跟當(dāng)前運(yùn)動控制技術(shù)研究的發(fā)展趨勢,吸收了數(shù)控技術(shù)和相關(guān)運(yùn)動控制技術(shù)的最新成果,提出了基于PCI和FPGA的方案,研制了一款比較新穎的、功能強(qiáng)大的、具有很大柔性的四軸多功能運(yùn)動控制卡。 本課題的具體研究主要有以下幾方面: 首先,通過對運(yùn)動控制卡及運(yùn)動控制系統(tǒng)等行業(yè)現(xiàn)狀的全面調(diào)研,和對運(yùn)動控制技術(shù)的深入學(xué)習(xí),在比較了幾種常用的運(yùn)動控制方案的基礎(chǔ)上,提出了基于FPGA的運(yùn)動控制設(shè)計(jì)方案,并規(guī)劃了板卡的總體設(shè)計(jì)。 其次,根據(jù)總體設(shè)計(jì),規(guī)劃了板卡的結(jié)構(gòu),詳細(xì)劃分并實(shí)現(xiàn)了FPGA各部分的功能;利用光電隔離原理設(shè)計(jì)了數(shù)字輸入/輸出電路。 再次,利用FPGA的資源實(shí)現(xiàn)了PCI從設(shè)備接口,達(dá)到跟控制卡通信的目的,針對運(yùn)動控制中的一些具體問題,如運(yùn)動平穩(wěn)性、實(shí)時控制以及多軸聯(lián)動等,在FPGA上設(shè)計(jì)了四軸運(yùn)動控制電路,定義了各個寄存器的具體功能,設(shè)計(jì)了功能齊全的加/減速控制電路、變頻分配電路、倍頻分頻電路和三個功能各異的計(jì)數(shù)器電路等,自動降速點(diǎn)運(yùn)動、A/B相編碼器倍頻計(jì)數(shù)電路等特殊功能。最后,進(jìn)行了本運(yùn)動控制卡的測試,從測試和應(yīng)用結(jié)果來看,該卡達(dá)到預(yù)期的要求。
上傳時間: 2013-07-27
上傳用戶:zgu489
目 錄 實(shí)驗(yàn)一、 電路仿真基礎(chǔ) ………………………………………………………… 1 實(shí)驗(yàn)二、 系統(tǒng)仿真基礎(chǔ) ………………………………………………………… 20 實(shí)驗(yàn)三、 DC仿真和電路模型 …………………………………………………… 36 實(shí)驗(yàn)四、 AC仿真和調(diào)整 ………………………………………………………… 55 實(shí)驗(yàn)五、 S參數(shù)仿真和優(yōu)化 …………………………………………………… 72 實(shí)驗(yàn)六、 濾波器:瞬態(tài),設(shè)計(jì)指導(dǎo),momentum,DAC …………………… 95 實(shí)驗(yàn)七、 諧波平衡仿真 …………………………………………………………115 實(shí)驗(yàn)八、 電路包絡(luò)仿真 …………………………………………………………132 實(shí)驗(yàn)九、 最終電路/系統(tǒng)仿真 ………………………………………………… 147 附錄A、 射頻瞬態(tài)仿真器 ………………………………………………………167 附錄B、 諧波平衡仿真器 ………………………………………………………173 附錄C、電路包絡(luò)仿真器 ……………………………………………………… 181 《ADS2005仿真實(shí)驗(yàn)教程》是設(shè)計(jì)一個用于1900MHz GSM的RF接收系統(tǒng),包含的部件主要有: ? 200MHz由集總參數(shù)元件構(gòu)成的低通濾波器 ? 1900MHz由微帶線構(gòu)成的帶通濾波器 ? 1900MHz的功放 ? 把1900MHz變到200MHz的混頻器 ? 其他小部件 在完成這個系統(tǒng)的過程中,就可以掌握目錄所示的內(nèi)
上傳時間: 2013-04-24
上傳用戶:Minly
隨著電信數(shù)據(jù)傳輸對速率和帶寬的要求變得越來越迫切,原有建成的網(wǎng)絡(luò)是基于話音傳輸業(yè)務(wù)的網(wǎng)絡(luò),已不能適應(yīng)當(dāng)前的需求.而建設(shè)新的寬帶網(wǎng)絡(luò)需要相當(dāng)大的投資且建設(shè)工期長,無法滿足特定客戶對高速數(shù)據(jù)傳輸?shù)慕谛枨?反向復(fù)用技術(shù)是把一個單一的高速數(shù)據(jù)流在發(fā)送端拆散并放在兩個或者多個低速數(shù)據(jù)鏈路上進(jìn)行傳輸,在接收端再還原為高速數(shù)據(jù)流.該文提出一種基于FPGA的多路E1反向復(fù)用傳輸芯片的設(shè)計(jì)方案,使用四個E1構(gòu)成高速數(shù)據(jù)的透明傳輸通道,支持E1線路間最大相對延遲64ms,通過鏈路容量調(diào)整機(jī)制,可以動態(tài)添加或刪除某條E1鏈路,實(shí)現(xiàn)靈活、高效的利用現(xiàn)有網(wǎng)絡(luò)實(shí)現(xiàn)視頻、數(shù)據(jù)等高速數(shù)據(jù)的傳輸,能夠節(jié)省帶寬資源,降低成本,滿足客戶的需求.系統(tǒng)分為發(fā)送和接收兩部分.發(fā)送電路實(shí)現(xiàn)四路E1的成幀操作,數(shù)據(jù)拆分采用線路循環(huán)與幀間插相結(jié)合的方法,A路插滿一幀(30時隙)后,轉(zhuǎn)入B路E1間插數(shù)據(jù),依此類推,循環(huán)間插所有的數(shù)據(jù).接收電路進(jìn)行HDB3解碼,幀同步定位(子幀同步和復(fù)幀同步),線路延遲判斷,FIFO和SDRAM實(shí)現(xiàn)多路數(shù)據(jù)的對齊,最后按照約定的高速數(shù)據(jù)流的幀格式輸出數(shù)據(jù).整個數(shù)字電路采用Verilog硬件描述語言設(shè)計(jì),通過前仿真和后仿真的驗(yàn)證.以30萬門的FPGA器件作為硬件實(shí)現(xiàn),經(jīng)過綜合和布線,特別是寫約束和增量布線手動調(diào)整電路的布局,降低關(guān)鍵路徑延時,最終滿足設(shè)計(jì)要求.
標(biāo)簽: FPGA 多路 傳輸 片的設(shè)計(jì)
上傳時間: 2013-07-16
上傳用戶:asdkin
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1