本文以濾波技術飛速發展,小波濾波優越性的凸現,以及虛擬儀器的易操作等良好特性為背景,以簡單易行和濾波效果良好為研究目的,展開本文信號濾波處理的研究工作。 在深入研究三種小波濾波方法原理和優缺點的基礎上,本文提出了一種新的優化濾波方法,包括以下三個方面: 首先,將靜態小波變換(SWT)應用于濾波處理。利用SWT的平移不變性和冗余性來進行含噪信號的分解,這樣不僅彌補了正交小波變換的不足,而且提高了濾波性能。 然后,提出了基于空域相關的優化閾值函數濾波算法。該算法把小波系數間的相關性應用于閾值濾波。它是在構造出基于空域相關的顯著性函數和基于顯著性函數的閾值濾波過程的基礎上,提出了基于空域相關的優化閾值函數,并且把極小化廣義交叉驗證(GCV)得到均方差(MSE)意義下的最優閾值作用于該優化閾值函數。該濾波算法不僅實現了噪聲的有效去除,而且信號的重要特征也保留完好; 最后,引入了新型鎖相環--正交鎖相環(QPLL)。鑒于QPLL不僅具有鎖定范圍寬、入鎖速度快、鎖定后精度高的性能,而且還具有良好的抑制諧波、噪聲的能力,以及對波形畸變不敏感等良好特性,所以QPLL的引入達到了信號鎖定和優化濾波的目的,使優化濾波方法的設計更具新意,而且取得了更好的濾波效果。 為了驗證優化濾波方法,本文搭建了實驗平臺,它是由FPGA信號采集部分和LabVIEW軟件濾波處理兩個部分構成。通過傳感器采集信號,經過A/D轉換后送入FPGA。以FPGA為CPU控制A/D轉換,并進行波形數據緩存,在接收到LabVIEW的命令后,將存儲的數據送給串口。在LabVIEW中,從串口檢測所需的波形數據,然后通過優化濾波方法將數據進行濾波處理,最后在前面板中把實驗結果顯示出來。 實驗結果表明,該優化濾波方法不僅能實現優良的濾波功能,而且簡單易行,是一種有效的濾波方法。
上傳時間: 2013-07-20
上傳用戶:gokk
集散控制系統(Distributing Control System,縮寫DCS)是以多個微處理機為基礎利用現代網絡技術、現代控制技術、圖形顯示技術等實現對分散控制系統的調節、監視的控制技術。DCS具有功能分散,故障分散的優點,適合于上位機對多個下位機的管理和監控。本文將DCS技術應用到中央空調上,設計了中央空調的溫度模糊集散控制系統。 本系統在整體結構上采用集散控制的方案。一臺控制計算機(上位機)對各個空調房間的風機和水泵進行集中管理,若干臺下位機下放分散到現場實現分布式控制,上位機和各個下位機之間用控制網絡互連以實現相互之間的信息傳遞。 在控制策略上,針對被控量溫度的大慣性、時變性的特點,本文設計了溫度的二維模糊控制策略,該策略是基于專家和有經驗的操作人員的經驗進行調控的智能控制系統。模糊控制是以查詢模糊控制規則表的形式實現,模糊控制表可以隨著人們的經驗和知識的增長日益完善。 根據總體方案,設計下位機即開關磁阻電機(SRM)控制節點和信號采集節點的軟、硬件。主要工作包括SRM的就地和遠程兩種控制方式的實現、模/數和數/模轉換器的控制、模擬電壓的采集、溫度傳感器的選型、CAN網絡通信的硬、軟件,以及下位機的主程序的設計和調試等。 完成上述工作后,采用溫度開環和閉環分別進行了試驗。通過實驗證明,所設計方案的可行性。最后對中央空調溫度控制系統的運行性能進行了總結,對下一步用于該系統的研究與開發具有一定的參考價值。
上傳時間: 2013-04-24
上傳用戶:yangzhiwei
隨著社會的發展以及能源、環保等問題的日益突出,純電動汽車以其零排放,噪聲低等優點越來越受到世界各國的重視,被稱作綠色環保車。作為發展電動車的關鍵技術之一的電池管理系統(BMS),是電動車產業化的關鍵。本課題配合“基于開關磁阻電機的電動汽車的研制”,研制適用于純電動汽車的電池管理系統。 電池管理系統直接檢測及管理電動汽車的儲能電池運行的全過程,包括電池基本信息測量、電量估計、單體電池間的均衡、電池故障診斷幾個方面。 本論文主要工作是研制適用于純電動汽車的蓄電池管理系統。研究鉛酸蓄電池二階模型的建立與剩余容量的卡爾曼濾波估算方法。分析鉛酸蓄電池的基本工作原理和影響蓄電池組剩余容量SOC(state of charge)的主要因素。 介紹了基于DSP2407的蓄電池組控制器的硬件平臺,完成DSP小系統、電池數據采集電路、信號調理電路、CAN總線相關電路等硬件電路設計、調試、完善。獨立完成系統所有軟件設計,包括:主程序設計,電池基本信息檢測子程序設計,電池剩余電量卡爾曼濾波估算程序設計,電池狀態檢測子程序設計,CAN收發子程序設計,EEPROM讀寫子程序設計。 最后,在電動汽車上搭建實驗平臺,將鉛酸蓄電池組與設計的軟硬件系統聯合進行調試、試驗。測得了相關數據。試驗結果表明,本文介紹的電池管理系統硬件電路可靠、經濟、抗干擾能力強。可以實現:電池電壓、電流、溫度的模擬量采集;剩余電量的計算和電池狀態的判斷;實時顯示,故障時報警等BMS相關功能。
上傳時間: 2013-06-11
上傳用戶:hustfanenze
充電系統對于實際的電動汽車而言是不可缺少的子系統,當蓄電池的電能用完之后,就必須使用充電系統對電池進行再充電。對于這種電動車充電系統的監控,目前國內尚處于起步階段。 本文以電動車充電站的建設為背景,對充電機監控系統的通信總線和上位機軟件設計進行了研究。首先介紹了系統的整個網絡規劃,然后對工業現場總線的特點、CAN2.0總線技術、涉及到的通信協議分別做了詳細的描述,重點介紹了CAN總線的相關設計和系統的硬件、軟件設計及實驗結果。設計過程中參考了目前比較成熟的CAN2.0與J1939協議,并創新性的將這一用于汽車內部的通信總線移植到充電站內充電機與上位機之間的通信系統中。整個設計的創新在于將CAN總線這一現有成熟技術應用在充電站監控系統建設這一新領域,成功的實現了總線的移植。 整個系統中,系統前端執行數據采集、充電控制等任務,同時通過CAN總線和以太網分別實現前端數據采集模塊與監控計算機、監控計算機與數據服務器的數據傳輸,實現站內充電機的統一監控。本文圍繞系統整體網絡組建,CAN網絡通信以及系統軟硬件設計進行了討論,并提供了一套完整的、先進的、可行的充電機監控系統通信總線及軟件的解決方案。這種監控方案提高了系統通信的實時性、準確性、安全性,同時極大的提高了充電工人的工作效率。 目前系統的各項參數及功能已在實驗室測試完畢,性能已基本達到設計目標,即將被用于奧運會電動汽車充電站的建設。
上傳時間: 2013-04-24
上傳用戶:gtzj
汽車轉向系統是影響汽車操縱穩定性、主動安全性和舒適性的關鍵部件。電動助力轉向(EPS)是一種全新的汽車動力轉向技術,具有節能環保的優點,與汽車的發展主題相符。隨著現代汽車工業的發展,汽車電控系統不斷增多,這些復雜的系統,使得汽車故障自診斷功能要求越來越高。本文主要圍繞國家自然科學基金項目:電動助力轉向與汽車性能協調系統的分析及綜合控制研究(項目編號:50475121),針對EPS故障分析和診斷展開研究。主要內容如下: 首先,建立了EPS系統的基本故障樹模型,確定系統的故障形式,了解故障發生的原因和故障模式的傳播途徑,以實際開發的轉向軸助力式電動助力轉向系統為研究對象,建立了轉向軸助力式電動助力轉向系統的具體故障樹模型,并對其主要故障進行了診斷分析。 其次,提出了將CAN總線技術應用到EPS系統故障診斷中的思想,闡述了基于神經網絡的故障診斷策略,查找故障,執行相應操作。設計了包括控制單元的傳感器故障信號采集電路及CAN控制器的EPS故障診斷系統,給出了詳細的硬件電路圖及ARM處理器-LPC2131單片機之間的接口硬件電路圖,軟件設計主要包括控制系統的程序設計,CAN總線接口的程序設計,包括一些初始化程序,信號采集,故障診斷顯示程序等。 最后,利用Visual Basic語言完成了故障診斷系統的上層管理系統監控界面的設計,實現與故障節點的數據交換,達到診斷控制的要求。 實驗測試結果表明,本文提出的基于CAN總線的EPS故障診斷系統的方案是可行的,且系統的各個部分運行穩定、可靠,滿足設計功能和要求。
上傳時間: 2013-07-18
上傳用戶:wang5829
基于USB和單片機的多路信號采集系統 根據多路信號發生器輸入的模擬信號,設計基于單片機和USB接口的多路信號采集系統,以便于與計算機進行交互。
上傳時間: 2013-06-07
上傳用戶:yx007699
貴州電解鋁廠供電四車間廠房內變壓器、整流柜、電容等設備種類繁多,同系列設備安放距離跨度較大.這些電力電子器件長期運行導致系統內部某些連接點絕緣介質老化,甚至脫落.這種現象單憑肉眼很難觀察,該廠對此問題的解決方法為:技術工人攜帶小型紅外探測儀定期采集上述器件的某些連接點,從紅外圖像數據得出溫度數據以此判斷器件工作是否處于良好狀態.由于人為因素,工人不一定能全部獲取所有連接點數據.可見,此方法費時費力,還存在隱患. 針對現行探測方法存在的弊端,依托"中鋁貴州分公司電解鋁廠整流所安全運行監控系統開發"項目,利用一臺直線行走的智能小車停靠在已選擇的定位點處監測車間的電器設備,因此這就涉及到了監控小車的精準定位問題.本文以卞位機智能監控小車為研究對象,采用模糊PID控制技術對PLC發出的脈沖頻率進行自動調節,依據脈沖頻率誤差E和誤差變化率EC的變化對PID控制的參數進行自整定,實現對小車速度的模糊控制,從而實現了小車的精準定位,為上位機的監控工作做好了準備. 論文第一章介紹了電解鋁廠供電車間的供電情況,分析了小車定位精準的重要性,介紹了本文的研究內容.第二章對小車主要結構的硬件設計作了介紹.第三章論述了小車的運動控制,從分析步進電機的矩頻特性和數學模型入手,介紹了小車的啟停控制和運動中的測速.第四章論述了小車的精準定位方法,介紹了模糊PID控制器設計,重點介紹了模糊PID控制算法的程序設計.第五章列舉了實際運行調試中出現的幾種問題,介紹了相應的控制方法加以克服.第六章對論文進行了總結.
上傳時間: 2013-04-24
上傳用戶:kirivir
控制器局域網(CAN)最初是由德國BOSCH公司為汽車的監測、控制系統設計的。它是一種有效的支持分布式控制或者實時控制的串行通信網絡。由于其具有多主機、高性能以及高可靠性,CAN總線已經廣泛應用于汽車電子控制、過程控制、機械工業、紡織機械、機器人、數控機床、醫療器械以及傳感器等領域。CAN總線已經形成國際標準,并已被公認為幾種最有前途的現場總線之一。 另一方面,隨著電動車的技術的不斷發展,電動車已經開始邁向了市場普及的道路。對于電動車電池的管理和維護越來越成為電動車發展的重點之一。由于CAN具有抗干擾性強、連接簡單、無主通信等特點,非常適合用來實現實時數據的采集和傳輸。因此,本文利用CAN總線為基礎設計了一個電池實時數據采集與管理系統,經分析、設計、編程和調試,在實際應用中得以實現。 該系統主要包括數據采集層,數據傳輸層和用戶管理層三個部分。數據采集層的主要任務是電池實時數據的采集和發送;數據傳輸層的主要功能是通過CAN總線接收數據采集層發送的實時數據,并將其轉換成RS232串口協議發送到上位機;用戶管理層的主要功能是通過串口接收數據,實時顯示,存儲和分析。 論文完成的主要工作有: (1) 通過對系統需求的分析,將整個系統分為三個獨立的層,分別進行了軟硬件設計,實現了系統的模塊化,增強了系統的應用性; (2) 詳細的研究了CAN2.0B協議和SAE J1939協議,并在此基礎上,編寫了適合本設計的通訊協議; (3) 深入研究了MC9S12DG128芯片的硬件結構和軟件設計方法; 本課題的創新點在于利用目前汽車工業廣泛采用的CAN總線協議,設計了一套簡單,高效,穩定的電池數據采集與管理系統,并在實際中得以應用。在系統設計過程中將整個系統分為3個層,大大提升了系統的模塊化水平,有利于系統的擴展和維護。
上傳時間: 2013-07-07
上傳用戶:1417818867
電線電纜是國家經濟建設的一項重要的產業,在鐵路通信中,皮泡皮通信電纜因為其具有與其它電纜相同性能的情況下,直徑小、成本低、重量輕的特點,得到了人們的青睞。而在單線擠塑機中的溫度控制直接影響電纜的性能質量。溫度控制的可靠與否及其控制精度的高低己成為決定產品質量的關鍵,溫度控制也成為生產工藝的重要組成部分。在工藝控制當中,應盡量減小其超調量、波動、響應時間和偏差,這對產品的質量,產量和原料的節省都是及其重要的。 本文主要針對擠塑機的溫度這個參數進行控制。全文主要包括以下幾個部分:首先分析了傳統PID、和模糊控制的優缺點。在此基礎上,系統選用了模糊自適應PID控制算法。在硬件方面,在分析了系統控制對象的基礎上,以LPC2131為控制核心,運用MAX6675采集溫度、LCD和鍵盤作為人機交換平臺、以PWM方式對固體繼電器進行控制。軟件方面,在ARM的集成開發環境AD1.2下,利用C語言,進行了軟件的設計與調試,實現了硬件的配置和整體控制系統的所有功能。同時也實現了用Modbus協議與PC機通訊的下位機部分程序,并運用串口調試助手V2.2測試了其功能性。另外論文詳細的給出了控制平臺的各個功能程序模塊軟件流程。通過在實驗室對系統進行了模擬實驗,該控制平臺運行穩定,可靠,實現了預期的功能,證明了將模糊PID算法引入擠塑機溫度控制系統當中,改善了系統的控制效果,具有更好的魯棒性和自適應能力。
上傳時間: 2013-05-23
上傳用戶:skhlm
斷路器是電力系統中重要的控制和保護設備,對維護電力系統的安全、穩定和可靠運行起著重要的作用。如何使斷路器高度智能化,并且更安全和可靠,是電力系統保護的發展要求,也是本論文研究的目的。 本文在深入研究了智能斷路器國內外發展狀況的基礎上,精心設計了以數字信號處理器DSP和復雜可編程邏輯器件CPLD為核心的系統硬件。DSP是智能斷路器測控單元的核心器件,它實現斷路器的各種保護、報警、顯示與控制功能。CPLD完成狀態量的監測,以及各種邏輯信號的輸出。兩種器件相互配合使得斷路器系統更加智能化。研究了斷路器測控單元的測量原理及保護算法,并進行了具體的硬件和軟件模塊的設計,旨在實現斷路器的智能保護、遠程控制和集中管理。本設計以TI公司的DSP芯片TMS320LF2407為核心。硬件設計主要包括信號調理模塊設計、信號采樣模塊設計、保護執行模塊設計、CPLD模塊設計和輸入輸出模塊設計。并且利用TMS320LF2407本身具有的CAN2.0模塊,通過CAN總線實現斷路器和上位機的通信,實現遙測、遙調、遙控、遙信等“四遙”功能。軟件采用模塊化設計,每一個模塊相對獨立,完成某個特定功能,便于維護和添加新功能,并且調試靈活方便。文中給出了主程序及各個子程序的流程圖,其中子程序有數據采集子程序、FFT計算子程序、液晶顯示子程序、短路瞬時保護子程序、過載長延時保護子程序、接地故障保護子程序和短路短延時保護子程序等。并且設計中充分考慮了斷路器工作環境的惡劣性,分析了各種干擾的來源,并針對各種干擾采取了對應的軟件和硬件的抗干擾措施。最后,為了驗證全波傅氏算法能否滿足電網數據處理精度的要求,利用MATLAB搭建仿真平臺,對其進行了仿真。結果表明全波傅氏算法能達到系統的要求。
上傳時間: 2013-04-24
上傳用戶:BK094