四軸飛行器又稱四旋翼飛行器、四旋翼直升機,簡稱四軸、四旋翼。這四軸飛行器(Quadrotor)是一種多旋翼飛行器。四軸飛行器的四個螺旋槳都是電機直連的簡單機構,十字形的布局允許飛行器通過改變電機轉速獲得旋轉機身的力,從而調整自身姿態。電機1和電機3逆時針旋轉的同時,電機2和電機4順時針旋轉,因此當飛行器平衡飛行時,陀螺效應和空氣動力扭矩效應均被抵消。四軸飛行器是一個在空間具有6個活動自由度(分別沿3個坐標軸作平移和旋轉動作),但是只有4個控制自由度(四個電機的轉速)的系統,因此被稱為欠驅動系統(只有當控制自由度等于活動自由度的時候才是完整驅動系統)。不過對于姿態控制本身(分別沿3個坐標軸作旋轉動作),它確實是完整驅動的。與直升機相比,四軸飛行器可以實現的飛行姿態較少,不過基本的前進、后退、平移等狀態都可以實現。但是四軸飛行器的機械結構遠遠比直升機簡單,維修和更換的開銷也非常小,這讓四軸飛行器有了比直升機更大的應用優勢。自動控制原理為了保持飛行器的穩定飛行,在四軸飛行器上裝有3個方向的陀螺儀和3 軸加速度傳感器組成慣性導航模塊,可以計算出飛行器此時相對地面的姿態以及加速度、角速度。飛行控制器通過算法計算保持運動狀態時所需的旋轉力和升力,通過電子調控器來保證電機輸出合適的力。
上傳時間: 2022-06-11
上傳用戶:jason_vip1
第 1 章,系統概述,包括原理、選型、安裝和接線第 2 章,編程入門,實現用最簡單的程序控制一套硬件。第 3 章, TwinCAT 開發環境的深入介紹,不做練習,僅供查詢。第 4 章,操作系統和硬件,包括系統備份、桌面接管等工具。第 5 章,常用功能:包括掉電保持、數據存儲、配方功能等第 6 章, TwinCAT 庫文件,重點介紹溫控、 PID、 OS 功能擴展、 EtherCAT 診斷和配置第 7 章, 連接 IO 模塊,介紹各種 IO 模塊的特殊用法。第 8 章, 連接其它 TwinCAT 系統,包括 ADS 通訊和 Realtime Ethernet第 9 章, 連接第三方設備 ,包括與儀表、驅動、觸摸屏、視覺系統的各種通訊。第 10 章, 連接第三方 PLC , TwinCAT 作為現場總從站集成到其它 PLC 中。第 11 章, HMI 解決方案,包括觸摸屏、組態軟件、高級語言程序和 TwinCAT HMI第 12 章, 連接企業數據庫,通過 Tc Database Server 實現 PLC 與數據庫的通訊。第 13 章, 特殊 IO 模塊(待填充)第 14 章,從 TwinCAT 2 到 TwinCAT 3。講解 Tc 3.0 與 Tc 2.0 的區別。第 15 章,附錄,包括 PLC 編程手冊、 簡明安裝指南、 Codesys 中文幫助
標簽: twincat
上傳時間: 2022-06-13
上傳用戶:
PCF8591 8位A/D和D/A轉換1、特性:單電源供電。工作電壓: 2.5 V ~ 6V。待機電流低。I2C 總線串行輸入/輸出。通過3 個硬件地址引腳編址。采樣速率取決于I2C 總線速度。4個模擬輸入可編程為單端或差分輸入。自動增量通道選擇。模擬電壓范圍: VSS~VDD。片上跟蹤與保持電路。8 位逐次逼近式A/D 轉換。帶一個模擬輸出的乘法DAC。2、應用:閉環控制系統。用于遠程數據采集的低功耗轉換器。電池供電設備。在汽車、音響和TV 應用方面的模擬數據采集。3、概述:PCF8591 是單片、單電源低功耗8 位CMOS 數據采集器件, 具有4 個模擬輸入、一個輸出和一個串行I2C 總線接口。3 個地址引腳A0、A1 和A2 用于編程硬件地址,允許將最多8 個器件連接至I2C總線而不需要額外硬件。器件的地址、控制和數據通過兩線雙向I2C 總線傳輸。器件功能包括多路復用模擬輸入、片上跟蹤和保持功能、8 位模數轉換和8 位數模擬轉換。最大轉換速率取決于I2C 總線的最高速率。I2C 總線系統中的每一片PCF8591 通過發送有效地址到該器件來激活。該地址包括固定部分和可編程部分??删幊滩糠直仨毟鶕刂芬_A0、A1 和A2 來設置。在I2C 總線協議中地址必須是起始條件后作為第一個字節發送。地址字節的最后一位是用于設置以后數據傳輸方向的讀/寫位。(見圖4、16、17)
上傳時間: 2022-06-17
上傳用戶:qdxqdxqdxqdx
在電力系統中,發電機輸出的功率有兩種,一種是有功功率,另外一種是無功功率。有功功率是保持電設備正常運行的功率,無功功率反映了無源網絡中電源與電容和電感之間的能量轉換,雖未被網絡消耗,但反映了網絡內部與外部交換能量能力的大小。大多數電力電子裝置的功率因數很低,它們所消耗的無功功率在電力系統所輸送的電量中占有很大的比例。無功功率增加會導致電流的增大,設備及線路的損耗增加,導致大量有功電能損耗。同時使功因數偏低、系統電壓下降。無功功率如果不能就地補償,用戶負荷所需要的無功功率全靠發、院電設備長距離提供,就會使配電、輸電和發電設施不能充分發揮作用,降低發、輸電的能力,使電網的供電質量惡化,嚴重時可能會使系統電壓崩潰,造成大面積停電事故所以當無功電源容量不足時,會使電氣設備的容量得不到充分利用,降低饋電線路的輸電能力,增大線損,使系統電壓難以保證,電網向用戶輸送功率的能力也受到影響。隨著電網容量的不斷增加,對電網無功功率的要求也與日俱增,因此解決好配電電網的無功補償問題,對電網的安全和節能降耗有著重要的現實意義。\/供電系統常山于感性負截過重,造成感性無功過大,電能質量下,,功率因數過低。為提高電能質量和功率因數,維護電力系統安全、穩定地運行,常需在低壓側裝設無功補償裝置。電力設備的無功補償裝置可以分為兩部分,即硬件部分和軟件部分,而軟件部分的設備有一項重要的內容即人機界面的交互部分,如果能有一個更為人性化的人機界面,勢必會使無功補償裝置操作更為簡單方便。
上傳時間: 2022-06-18
上傳用戶:
rC-BUs接口實時時鐘RX-8025 SA/NB內置高精度頻率調整的32768kHz水晶振子(Ta=+25℃時±5×106)對應rc-BUS高速模式(400kHz)時計(時、分、秒)、日歷(年、月、日、星期)的計數功能(BCD代碼)可選擇12/24時間制自動判別至2099年的間年·內置高精度時計精度調整電路·對CPU的發生中斷功能(周期1個月~0.5秒、具有中斷請求、中斷停止功能)·2個系統的鬧鐘功能(Alam-w:星期、時、分、Alarm_D:時、分).32 768kHz時鐘輸出(帶控制引腳的CMOS輸出)對內部數據進行有效無效判定的振動停止檢測功能電源電壓監視功能(可選擇檢測標準電壓)1.15V~55V的寬幅計時(保持)電壓范圍1.7v~5.5V的寬幅接口電壓范圍低消耗電流 0.48uA/3.0V(Typ)1.概要本模塊是內置高精度調整的32 768kHz水晶振子的1c總線接口方式的實時計時器。除了具有6種發生中斷功能、2個系統的鬧鐘功能、對內部數據進行有效無效判定的振動停止檢測功能、電源電壓監視功能等外,還配有時鐘精度調整功能,可以對時鐘進行任意精度調整。內部振蕩回路是以固定電壓驅動,因而可獲得受電壓變動影響小且穩定的3276skHz時鐘輸本產品功能多樣,采用表貼封裝形式,最適用于各種手機、攜帶終端及其他小型電子機器等。
標簽: rx8025
上傳時間: 2022-06-18
上傳用戶:d1997wayne
本文以觸摸屏的人機交互設計為與機制為課題背景,對不同觸摸設備的交互特征和用戶使用行為進行分析,包括手機(小尺寸觸摸設備)及平板(大尺寸觸摸設備),從而總結出觸摸設備的交互設計原則。通過實例總結手機為例的小尺寸屏幕的6種典型界面結構,平板為例的大尺寸觸屏設備的6種典型界面結構。大部分的應用界面都是以此為基礎展開設計。詳細介紹了各個框架的優勢和劣勢,以及對應的使用場景,適合的應用類型。填補了觸摸屏界面結構庫眼動研究的空白。并通過眼動實驗分析用戶進行觸屏操作時的眼動規律,經過數據分析進一步探索界面結構的應用場景和交互操作特性,得出一套完整的界面結構選擇規律。最后應用前文的研究結論,通過實例設計一款未來的家庭廚房生活的概念產品。選擇與其匹配的界面結構,進行交互界面及流程設計。本文的研究結論對改善觸屏設備的交互設計是非常有意義的,符合科技發展趨勢且具有一定的應用價值。隨著信息社會的發展,觸摸屏設備逐步進入人們的視線。越來越多的觸屏設備將投入市場并被用戶所使用,觸摸設備也將更多的影響和改變人們的生活方式。觸摸屏作為一種最新的電腦輸入設備,是目前最簡單、自然的一種人機交互方式。它賦予了多媒體以嶄新的面貌。觸摸屏的人機交互和個人電腦的交互方式有著天壤之別,個人電腦的輸入設備主要是由鍵盤和鼠標操作完成,點擊式交互是個人電腦上的主要交互方式;而觸摸屏則是以手指的手勢操作為主。手勢操作更直接、有效,但是由于手指觸擊屏幕的面積較大,相比鼠標更容易造成誤操作。同時,不同材質的觸摸屏靈敏度也決定了手勢交互是否友好。研究表明,用戶用食指和拇指進行操作也是有區別的,拇指的觸及范圍相對食指會更大,觸擊準確率更低11。因此對觸摸屏進行針對性的設計研究,而不是直接將桌面設備的界面設計規則照搬過來是有一定實踐意義的。本文的研究以觸屏界面結構為落腳點,設計的最終目的是提出一套觸屏界面結構的選擇規范,為觸屏人機界面資源庫添加結構庫的部分。讓產品有著更加良好的用戶體驗,有效方便的解決開發人員在設計一款新的應用時不知選取怎樣的界面結構問題,減少開發人員的重復工作量和不必要的創新和濫用,規范用戶界面結構使產品在不同的觸摸設備上保持一致的交互體驗。這對于產品的最終用戶,體驗將起到很重要的作用。
上傳時間: 2022-06-18
上傳用戶:zhanglei193
摘要:建立了數字控制DC/DC開關電源閉環系統的s域小信號模型,采用數字重設計法針對給定的系統季數設計了數字補償器。應用SISO Design Tool仿真平臺,在伯德圖分析和根軌連法的基礎上設計了連續城的模擬補償器,并進行了離散化處理。在建立系統s城模型時引入了模數轉換器和數字脈寬調制發生器產生的延遲效應,使補償器的設計考慮了采樣速率對系統的影響,改善了傳統離散設計的誤蓋?;诮套种卦O計法構建的數字補償器實現了對脈寬調制信號的可編程精確控制,保證了變換器閉環工作良好的動態特性。仿真實驗結果驗證了所設計的數字補償器的性能。關鍵詞:數字控制系統;模數轉換;數字重設計法;數字補償器;數字脈寬調制1引言傳統的開關電源采用模擬控制技術,使用比較器、誤差放大器和模擬電源管理芯片等元器件來調整電源輸出電壓,存在著控制電路復雜、元器件數量多以及控制電路成型后很難修改等缺點,不利于開關電源的集成化和小型化。近年來隨著微電子學的迅速發展,電源的控制也已經由模擬控制、模數混合控制,進入到數字控制階段”,具有可編程性、設計可延續性、元件數量減少、先進的校正能力等優點。以往由于DSP等控制芯片的高成本,數字控制多用于大功率AC/DC變換器、PFC功率因數校正等場合”,而對于DC/DC高頻開關電源只是實現了一些數字化的簡單應用,如采用MCU提供保護、監控和通信功能。隨著數字控制芯片成本的降低,數字控制也逐漸應用于DC/DC直流變換器,直接參與電源的反饋回路控制,實現了信號采樣補償和PWM調節的數字化。數字PID補償器的設計非常關鍵,直接決定了電源的輸出精度、動態響應等指標。近年來對DC/DC開關電源的數字補償器的建模研究已有很多論述],主要基于數字重設計法和直接數字設計法。數字重設計是在傳統模擬電源研究方法的基礎上,首先將數字電源簡化為一個連續的線性系統,忽略了采樣保持器效應后設計模擬補償器,然后采用雙線性近似(Tustin)、匹配零極點(MPZ)等方法對其離散化得到數字補償器。直接數字設計是直接建立零階保持器和被控對象的離散模型,再構建包括離散補償器的反饋系統。數字重設計和直接數字設計法在高采樣速率下設計的數字補償器性能差別不是很大,只是在低采樣速率下直接數字設計更加精確。
上傳時間: 2022-06-18
上傳用戶:zhanglei193
為了實現可以實時跟蹤人體并測量體溫的功能,利用嵌入式、圖像處理、溫度傳感器距離補償等技術,基于樹莓派在Python語言環境下使用第三方庫OpenCV設計了一種人體隨動測溫系統。系統首先通過攝像頭獲得圖像,然后提取人體的Gabor特征,兩軸云臺可以保持攝像頭對人體的跟蹤;同時,通過集成在攝像頭上的溫度傳感器實時獲取人體的溫度。實驗結果表明,本系統能夠很好地對人體進行識別、跟蹤以及測溫,具有推廣價值。
上傳時間: 2022-06-18
上傳用戶:zhaiyawei
超聲波電源廣泛應用于超聲波加工、診斷、清洗等領域,其負載超聲波換能器是一種將超音頻的電能轉變為機械振動的器件。由于超聲換能器是一種容性負載,因此換能器與發生器之間需要進行阻抗匹配才能工作在最佳狀態。串聯匹配能夠有效濾除開關型電源輸出方波存在的高次諧波成分,因此應用較為廣泛。但是環境溫度或元件老化等原因會導致換能器的諧振頻率發生漂移,使諧振系統失諧。傳統的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時換能器內部動態支路工作在非諧振狀態,導致換能器功率損耗和發熱,致使輸出能量大幅度下降甚至停振,在實際應用中受到限制。所以,在跟蹤諧振點調節逆變器開關頻率的同時應改變匹配電感才能使諧振系統工作在最高效能狀態。針對按固定諧振點匹配超聲波換能器電感參數存在的缺點,本文應用耦合振蕩法對換能器的匹配電感和耦合頻率之間的關系建立數學模型,證實了匹配電感隨諧振頻率變化的規律。給出利用這一模型與耦合工作頻率之間的關系動態選擇換能器匹配電感的方法。經過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調節電抗值。并給出了實現這一方案的電路原理和控制方法。最后本文以DSPTMS320F2812為核心設計出實現這一原理的超聲波逆變電源。實驗結果表明基于磁通控制的可控電抗器可以實現電抗值隨電抗控制度線性無級可調,由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復合控制策略,穩態時,換能器工作在DPLL鎖定頻率上;動態時,逐步修改匹配電抗大小,搜索輸出電流的最大值,再結合DPLL鎖定該頻率。配合PS-PWM可實現功率連續可調。該超聲波換能系統能夠有效的跟隨最大電流輸出頻率,即使頻率發生漂移系統仍能保持工作在最佳狀態,具有實際應用價值。
上傳時間: 2022-06-18
上傳用戶:
隨著汽車行業的飛速發展,汽車市場的不斷升溫,與之相關的電子技術也得到時了迅速發展及廣泛應用,汽車技術的成熟使得汽車銷售及使用不斷壯大,現代汽車的行駛速度也隨著路況的提高,汽車性能的提高而不斷提升。而由于突發性道路交通事故的頻繁發生,人們對汽車安全的關注度也日益提高。在汽車的高速行駛過程中,輪胎故障是駕駛人員最為擔心和最難預防的,也是突發性交通事故發生的重要原因。據統計,在高速公路上發生的交通事故有70%-80%是由于爆胎引起的,怎樣防止爆胎已成為汽車安全的第一大重要課題。權威的研究結果表明,保持標準的輪胎氣壓和及時發現輪胎故障是防止爆胎的關鍵,這就使對輪胎充氣壓力實行監測顯得非常重要。本文設計了一種汽車輪胎壓力監測系統(Tire Pressure Monitoring System)TPMS及氣壓調節系統的結合使用,該系統能夠對輪胎的參數進行實時監測,當發輪胎壓力參數異常時,及時采取報警措施并進行實時的汽壓調節,從而避免交通事故的發生。論文在對當前存在的各種TPMS系統結構形式進行分析和比較后,選用一種現行直接式TPMS結合氣壓調節系統,實現輪胎壓力實時的監測和調節的一種新型系統。提出一種基于直接式TPMS系統的,引入調節功能的新型設計。設計本身解決原有直接式TPMS的電池供電影響系統壽命的瓶頸,保證了監測系統的的穩定性。氣壓調節系統將解決汽車輪胎壓力偏差的問題,在監測到氣壓偏高或者偏低時,對駕駛人員作出警報提醒并實時啟動氣壓調節系統進行胎壓調節,在數他鐘內調節氣壓到標準值,保證行駛的暢順。本文對系統的電源部分,氣壓調節部分進行了分析設計,解決系統供電,信號采集,信號處理及執行調節,RFLF通信通等關鍵技術問題。對硬件進行測試。結果表明,該系統切實可行,成本,通信距離及可靠性方面均達到沒計指標。
標簽: 汽車胎壓監測
上傳時間: 2022-06-19
上傳用戶:kingwide