在工業(yè)應(yīng)用中常用一組傳感器對(duì)問一個(gè)被測(cè)量目標(biāo)在一個(gè)過程的不同位置進(jìn)行測(cè)量,然而由于每個(gè)傳感器位于過程的不同位置,它們將不問程度的受到嗓聲的干擾,為了從被嗓聲干擾的多傳感器測(cè)量值中獲得更準(zhǔn)確的測(cè)量結(jié)果,霱要進(jìn)“步研究多傳感器的融合理論多傳感器數(shù)據(jù)融合系統(tǒng)的關(guān)鍵在于如何充分利用各個(gè)傳感器的信息,得到對(duì)被測(cè)參數(shù)的最優(yōu)估計(jì),本文主要研究了以加權(quán)的方式進(jìn)行多傳感器數(shù)據(jù)融合的方法,即研究如何對(duì)每個(gè)傳感器進(jìn)行加權(quán),從而得到對(duì)被測(cè)參數(shù)最優(yōu)佑計(jì)的方法為此本文在介紹了多傳感器數(shù)據(jù)融合技術(shù)的基礎(chǔ)上,首先研究了基于奇異值分解的數(shù)據(jù)融合算法,通過對(duì)傳感器測(cè)量值構(gòu)成的矩陣進(jìn)行奇異值分解,利用每個(gè)傳感器測(cè)量值所對(duì)應(yīng)的奇異值,可以估計(jì)出對(duì)每個(gè)傳感器權(quán)值的最優(yōu)估計(jì),從而在不要任何先驗(yàn)知識(shí)的條件下,可僅由多傳感器的測(cè)量值,利用提出的算法得到在最小均方誤差意義下的被測(cè)參數(shù)的最優(yōu)估計(jì),此外,在許多工業(yè)過程中,人們利用多傳感器測(cè)量同一過程參數(shù)以控制該參數(shù)在過程中的不同位置能根據(jù)需要進(jìn)行合理分布,此時(shí)人們希望利用多傳感器融合的測(cè)量結(jié)果,對(duì)每一個(gè)傳感器的測(cè)量數(shù)據(jù)進(jìn)行重建,以獲得對(duì)每一個(gè)傳感器的測(cè)量結(jié)果進(jìn)行更為準(zhǔn)確的估計(jì)。為此,本文進(jìn)一步研究了基于小波降噪和數(shù)據(jù)融合的傳感器數(shù)據(jù)重建算法,仿真和實(shí)驗(yàn)結(jié)果都說明提出算法是有效的,最后,研究了非線性動(dòng)態(tài)系統(tǒng)的狀態(tài)融合問題,研究了加權(quán)無氣味卡爾曼濾波(UKF)方法,研究表明無氣味卡爾曼波波能克服了擴(kuò)展卡爾曼濾波(EKF)在狀態(tài)融合估計(jì)中的不足,可以得到了更準(zhǔn)確的狀態(tài)融合估計(jì)結(jié)關(guān)鍵詞多傳感器系統(tǒng),數(shù)據(jù)融合,奇異值分解,UKF
標(biāo)簽:
傳感器
數(shù)據(jù)融合
上傳時(shí)間:
2022-03-16
上傳用戶:aben