亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

共模<b>電感器</b>

  • 高速低壓低功耗CMOSBiCMOS運算放大器設計.rar

    近年來,以電池作為電源的微電子產品得到廣泛使用,因而迫切要求采用低電源電壓的模擬電路來降低功耗。目前低電壓、低功耗的模擬電路設計技術正成為微電子行業研究的熱點之一。 在模擬集成電路中,運算放大器是最基本的電路,所以設計低電壓、低功耗的運算放大器非常必要。在實現低電壓、低功耗設計的過程中,必須考慮電路的主要性能指標。由于電源電壓的降低會影響電路的性能,所以只實現低壓、低功耗的目標而不實現優良的性能(如高速)是不大妥當的。 論文對國內外的低電壓、低功耗模擬電路的設計方法做了廣泛的調查研究,分析了這些方法的工作原理和各自的優缺點,在吸收這些成果的基礎上設計了一個3.3 V低功耗、高速、軌對軌的CMOS/BiCMOS運算放大器。在設計輸入級時,選擇了兩級直接共源一共柵輸入級結構;為穩定運放輸出共模電壓,設計了共模負反饋電路,并進行了共模回路補償;在偏置電路設計中,電流鏡負載并不采用傳統的標準共源-共柵結構,而是采用適合在低壓工況下的低壓、寬擺幅共源-共柵結構;為了提高效率,在設計時采用了推挽共源極放大器作為輸出級,輸出電壓擺幅基本上達到了軌對軌;并采用帶有調零電阻的密勒補償技術對運放進行頻率補償。 采用標準的上華科技CSMC 0.6μpm CMOS工藝參數,對整個運放電路進行了設計,并通過了HSPICE軟件進行了仿真。結果表明,當接有5 pF負載電容和20 kΩ負載電阻時,所設計的CMOS運放的靜態功耗只有9.6 mW,時延為16.8ns,開環增益、單位增益帶寬和相位裕度分別達到82.78 dB,52.8 MHz和76°,而所設計的BiCMOS運放的靜態功耗達到10.2 mW,時延為12.7 ns,開環增益、單位增益帶寬和相位裕度分別為83.3 dB、75 MHz以及63°,各項技術指標都達到了設計要求。

    標簽: CMOSBiCMOS 低壓 低功耗

    上傳時間: 2013-06-29

    上傳用戶:saharawalker

  • FPGA中多標準可編程IO端口的設計.rar

    現場可編程門陣列(FPGA,Field Programmable Gate Array)是可編程邏輯器件的一種,它的出現是隨著微電子技術的發展,設計與制造集成電路的任務已不完全由半導體廠商來獨立承擔。系統設計師們更愿意自己設計專用集成電路(ASIC,Application Specific Integrated Circuit).芯片,而且希望ASIC的設計周期盡可能短,最好是在實驗室里就能設計出合適的ASIC芯片,并且立即投入實際應用之中。現在,FPGA已廣泛地運用于通信領域、消費類電子和車用電子。 本文中涉及的I/O端口模塊是FPGA中最主要的幾個大模塊之一,它的主要作用是提供封裝引腳到CLB之間的接口,將外部信號引入FPGA內部進行邏輯功能的實現并把結果輸出給外部電路,并且根據需要可以進行配置來支持多種不同的接口標準。FPGA允許使用者通過不同編程來配置實現各種邏輯功能,在IO端口中它可以通過選擇配置方式來兼容不同信號標準的I/O緩沖器電路。總體而言,可選的I/O資源的特性包括:IO標準的選擇、輸出驅動能力的編程控制、擺率選擇、輸入延遲和維持時間控制等。 本文是關于FPGA中多標準兼容可編程輸入輸出電路(Input/Output Block)的設計和實現,該課題是成都華微電子系統有限公司FPGA大項目中的一子項,目的為在更新的工藝水平上設計出能夠兼容單端標準的I/O電路模塊;同時針對以前設計的I/O模塊不支持雙端標準的缺點,要求新的電路模塊中擴展出雙端標準的部分。文中以低壓雙端差分標準(LVDS)為代表構建雙端標準收發轉換電路,與單端標準比較,LVDS具有很多優點: (1)LVDS傳輸的信號擺幅小,從而功耗低,一般差分線上電流不超過4mA,負載阻抗為100Ω。這一特征使它適合做并行數據傳輸。 (2)LVDS信號擺幅小,從而使得該結構可以在2.5V的低電壓下工作。 (3)LVDS輸入單端信號電壓可以從0V到2.4V變化,單端信號擺幅為400mV,這樣允許輸入共模電壓從0.2V到2.2V范圍內變化,也就是說LVDS允許收發兩端地電勢有±1V的落差。 本文采用0.18μm1.8V/3.3V混合工藝,輔助Xilinx公司FPGA開發軟件ISE,設計完成了可以用于Virtex系列各低端型號FPGA的IOB結構,它有靈活的可配置性和出色的適應能力,能支持大量的I/O標準,其中包括單端標準,也包括雙端標準如LVDS等。它具有適應性的優點、可選的特性和考慮到被文件描述的硬件結構特征,這些特點可以改進和簡化系統級的設計,為最終的產品設計和生產打下基礎。設計中對包括20種IO標準在內的各電器參數按照用戶手冊描述進行仿真驗證,性能參數已達到預期標準。

    標簽: FPGA 標準 可編程

    上傳時間: 2013-05-15

    上傳用戶:shawvi

  • 基于FPGA的PID控制器研究與實現.rar

    基于微處理器的數字PID控制器改變了傳統模擬PID控制器參數整定不靈活的問題。但是常規微處理器容易在環境惡劣的情況下出現程序跑飛的問題,如果實現PID軟算法的微處理器因為強干擾或其他原因而出現故障,會引起輸出值的大幅度變化或停止響應。而FPGA的應用可以從本質上解決這個問題。因此,利用FPGA開發技術,實現智能控制器算法的芯片化,使之能夠廣泛的用于各種場合,具有很大的應用意義。 首先分析FPGA的內部結構特點,總結FPGA設計技術及開發流程,指出實現結構優化設計,降低設計難度,是擴展設計功能、提高芯片性能和產品性價比的關鍵。控制系統由四個模塊組成,主要包括核心控制器模塊、輸入輸出模塊以及人機接口。其中控制器部分為系統的關鍵部件。在分析FPGA設計結構類型和特點的基礎上,提出一種基于FPGA改進型并行結構的PID溫度控制器設計方法。在PID算法與FPGA的運算器邏輯映像過程中,采用將補碼的加法器代替減法器設計,增加整數運算結果的位擴展處理,進行不同數據類型的整數歸一化等不同角度的處理方法融合為一體,可以有效地減少邏輯運算部件。應用Ouartus Ⅱ圖形輸入與Verilog HDL語言相結合設計實現了PID控制器,用Modelsim仿真驗證了設計結果的正確性,用Synplify Pro進行電路綜合,在Quaitus Ⅱ軟件中實現布局布線,最后生成FPGA的編程文件。根據控制系統的要求,論文設計完成了12位模數AD轉換器、數據顯示器、按鍵等相關外圍接口電路。 將一階、純滯后、大慣性電阻爐溫作為控制對象,以EP1C3T144 FPGA為核心,構建PID控制系統。在采用Pt100溫度傳感器、分辨率為2℃、最大溫度控制范圍0~400℃的條件下,實驗結果表明,達到無超調的穩定控制要求,為降低FPGA實現PID控制器的設計難度提供了有效的方法。

    標簽: FPGA PID 控制器

    上傳時間: 2013-06-13

    上傳用戶:15071087253

  • AD8221中文資料.rar

    AD8221中文資料,儀器儀表放大器。高共模抑制比

    標簽: 8221 AD

    上傳時間: 2013-07-31

    上傳用戶:songrui

  • 基于ARM的T波交替檢測技術

    心血管系統疾病是現今世界上發病率和死亡率最高的疾病之一。T波交替(T-wavealtemans,TWA)作為一種非穩態的心電變異性現象,是指心電T波段振幅、形態甚至極性逐拍交替變化。大量研究表明,TWA與室性心律失常、心臟性猝死等有直接密切的關系,已成為一種無創獨立性預測指標。隨著數字信號處理技術和計算機技術的迅速發展,微伏級的TWA已經可以被檢出,并且精度越來越高。本文以T波交替檢測為中心,基于ARM給出了T波交替檢測技術原理性樣機的硬件及軟件,實現實時監護的目的。 在TWA檢測研究中,需要對心電信號進行預處理,即信號去噪和特征點檢測。小波分析以其多分辨率的特性和表征時頻兩域信號局部特征的能力成為我們選取的心電信號自動分析手段。文中采用小波變換將原始心電信號分解為不同頻段的細節信號,根據三種主要噪聲的不同能量分布,采用自適應閾值和軟硬閾值折衷處理策略用閾值濾波方法對原始信號進行去噪處理:同時基于心電信號的特征點R峰對應于Mexican-hat小波變換的極值點,因此我們使用Mexican-hat小波檢測R峰,通過附加檢測方案確保了位置的準確性,并根據需要提出了T波矩陣提取方法。 隨后文章介紹了T波交替的產生機理及研究進展,分別從臨床應用和檢測方法上展現了目前TWA的發展進程,并利用了譜分析法、相關分析法和移動平均修正算法分別從時域和頻域對一些樣本數據進行T波交替檢測。在檢測中譜分析法抗噪能力較強,但作為一種頻域檢測方法,無法檢測非穩態TWA信號,而相關分析法受呼吸、噪聲影響較大,數據要求較高,因此可以在譜分析檢測為陽性TWA基礎上,再對信號進行相關分析,從而克服自身算法缺陷,確定交替幅度和時間段。最后對影響檢測結果的因素進行討論研究,從而降低檢測誤差。 文章還設計了T波交替檢測技術原理性樣機的關鍵部分電路和軟件框架。硬件部分圍繞ARM核的Samsung S3C44BOX為核心,設計了該樣機的關鍵電路,包括采集模塊、數據處理模塊(外部存儲電路、通信接口電路等)。其中在采集模塊中針對心電信號是微弱信號并且干擾大的特點,采用了具有高共模抑制比和高輸入阻抗的分級放大電路,有效的提取了信號分量:A/D轉換電路保證了信號量化的高精度。利用USB接口芯片和刪內部異步串行通訊實現系統與外界聯系。系統軟件中首先介紹了系統的軟件開發環境,然后給出了心電信號分析及處理程序設計流程圖及實現,使它們共同完成系統的軟件監護功能。

    標簽: ARM 檢測技術

    上傳時間: 2013-07-27

    上傳用戶:familiarsmile

  • 基于FPGA的PID控制器研究與實現

    基于微處理器的數字PID控制器改變了傳統模擬PID控制器參數整定不靈活的問題。但是常規微處理器容易在環境惡劣的情況下出現程序跑飛的問題,如果實現PID軟算法的微處理器因為強干擾或其他原因而出現故障,會引起輸出值的大幅度變化或停止響應。而FPGA的應用可以從本質上解決這個問題。因此,利用FPGA開發技術,實現智能控制器算法的芯片化,使之能夠廣泛的用于各種場合,具有很大的應用意義。 首先分析FPGA的內部結構特點,總結FPGA設計技術及開發流程,指出實現結構優化設計,降低設計難度,是擴展設計功能、提高芯片性能和產品性價比的關鍵。控制系統由四個模塊組成,主要包括核心控制器模塊、輸入輸出模塊以及人機接口。其中控制器部分為系統的關鍵部件。在分析FPGA設計結構類型和特點的基礎上,提出一種基于FPGA改進型并行結構的PID溫度控制器設計方法。在PID算法與FPGA的運算器邏輯映像過程中,采用將補碼的加法器代替減法器設計,增加整數運算結果的位擴展處理,進行不同數據類型的整數歸一化等不同角度的處理方法融合為一體,可以有效地減少邏輯運算部件。應用Ouartus Ⅱ圖形輸入與Verilog HDL語言相結合設計實現了PID控制器,用Modelsim仿真驗證了設計結果的正確性,用Synplify Pro進行電路綜合,在Quaitus Ⅱ軟件中實現布局布線,最后生成FPGA的編程文件。根據控制系統的要求,論文設計完成了12位模數AD轉換器、數據顯示器、按鍵等相關外圍接口電路。 將一階、純滯后、大慣性電阻爐溫作為控制對象,以EP1C3T144 FPGA為核心,構建PID控制系統。在采用Pt100溫度傳感器、分辨率為2℃、最大溫度控制范圍0~400℃的條件下,實驗結果表明,達到無超調的穩定控制要求,為降低FPGA實現PID控制器的設計難度提供了有效的方法。

    標簽: FPGA PID 控制器

    上傳時間: 2013-05-24

    上傳用戶:gyq

  • 心電信號調理電路設計

    心電(Electrocardiograph)作為人體重要的生理及病理指標之一,具有重要的醫學研究價值。針對其信號微弱、頻率低、阻抗高、隨機性強及易受干擾的特點,首先提出了信號調理電路設計的要求;然后針對性地選擇元器件并設計硬件電路,其中包括:一級放大電路、調零電路、50 Hz限波電路、帶通濾波電路及二級放大電路;最后對所設計的硬件電路進行實際測試。結果表明該調理電路具有輸出波形穩定、噪聲小和共模抑制比高的特點,提高了心電信號采集的精度。

    標簽: 心電信號 調理電路

    上傳時間: 2014-01-19

    上傳用戶:ommshaggar

  • 帶有增益提高技術的高速CMOS運算放大器設計

    設計了一種用于高速ADC中的高速高增益的全差分CMOS運算放大器。主運放采用帶開關電容共模反饋的折疊式共源共柵結構,利用增益提高和三支路電流基準技術實現一個可用于12~14 bit精度,100 MS/s采樣頻率的高速流水線(Pipelined)ADC的運放。設計基于SMIC 0.25 μm CMOS工藝,在Cadence環境下對電路進行Spectre仿真。仿真結果表明,在2.5 V單電源電壓下驅動2 pF負載時,運放的直流增益可達到124 dB,單位增益帶寬720 MHz,轉換速率高達885 V/μs,達到0.1%的穩定精度的建立時間只需4 ns,共模抑制比153 dB。

    標簽: CMOS 增益提高 運算 放大器設計

    上傳時間: 2014-12-23

    上傳用戶:jiiszha

  • 虛擬實現技術在典型差動放大電路特性分析中的應用

    介紹了差動放大電路演變歷程,理論上分析了典型差動放大的工作原理以及特性參數的計算公式:應用虛擬實現技術一Pmteus軟件進行了靜態特性、差模輸入信號、共模輸入信號的實驗研究,并對實驗現象進行了分析。

    標簽: 虛擬實現技術 典型 中的應用 差動放大電路

    上傳時間: 2013-11-14

    上傳用戶:zukfu

  • 應用工程師解答-零漂移運算放大器

    零漂移放大器可動態校正其失調電壓并重整其噪聲密度。自穩零型和斬波型是兩種常用類型,可實現 nV 級失調電壓和極低的失調電壓時間/溫度漂移。放大器的 1/f 噪聲也視為直流誤差,也可一并消除。零漂移放大器為設計師提供了很多好處:首先,溫漂和 1/f 噪聲在系統中始終起著干擾作用,很難以其它方式消除,其次,相對于標準的放大器,零漂移放大器具有較高的開環增益、電源抑制比和共模抑制比,另外,在相同的配置下,其總輸出誤差低于采用標準精密放大器的輸出誤差

    標簽: 工程師 零漂移 運算放大器

    上傳時間: 2013-11-23

    上傳用戶:kristycreasy

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品一区二区久激情瑜伽| 久久久久看片| 国产一区二区黄色| 久久久久久久性| 亚洲激情不卡| 国产精品视频网址| 免费观看日韩av| 亚洲国产精品久久精品怡红院| 欧美日韩国产91| 久久久www成人免费精品| 亚洲一区二区三| 日韩一级大片在线| 亚洲国产老妈| 在线观看一区视频| 精品成人国产在线观看男人呻吟| 影音先锋久久久| 国产日韩精品一区二区三区| 在线日本欧美| 欧美视频日韩| 国产欧美成人| 欧美xx69| 欧美激情一区二区三区成人| 亚洲女ⅴideoshd黑人| 亚洲裸体俱乐部裸体舞表演av| 国模套图日韩精品一区二区| 亚洲狼人精品一区二区三区| 欧美精品18videos性欧美| 久久成人人人人精品欧| 国产精品女主播| 亚洲免费视频成人| 欧美精品精品一区| 夜夜嗨av一区二区三区中文字幕 | 欧美天堂亚洲电影院在线观看 | 黄色亚洲网站| 国产欧美日韩一级| 亚洲二区在线观看| 亚洲精品美女91| 在线综合亚洲欧美在线视频| 亚洲欧美日韩精品久久奇米色影视| 久久国产福利| 欧美激情综合色综合啪啪| 欧美日韩亚洲网| 国产午夜精品全部视频播放 | 亚洲伦理网站| 一本色道久久综合精品竹菊| 亚洲欧美综合| 久久手机精品视频| 久久国产精品99久久久久久老狼 | 久久综合图片| 亚洲午夜精品久久久久久浪潮| 99国产精品自拍| 嫩草伊人久久精品少妇av杨幂| 亚洲美女黄色片| 国产日韩在线看片| 国产在线观看91精品一区| 久久蜜桃av一区精品变态类天堂| 黑人一区二区三区四区五区| 欧美精品一卡二卡| 西瓜成人精品人成网站| 亚洲第一页在线| 久久这里有精品视频| 久久成人精品无人区| 国产精品成人一区| 亚洲精品少妇网址| 欧美伦理视频网站| 亚洲第一在线视频| 亚洲小视频在线观看| 欧美一区二区视频观看视频| 国产日韩在线播放| 亚洲天堂偷拍| 欧美日韩情趣电影| …久久精品99久久香蕉国产| 久久xxxx| 在线看日韩av| 欧美精品日日鲁夜夜添| 亚洲激情在线播放| 免费日韩视频| 亚洲精品国精品久久99热一| 欧美精品综合| 亚洲精品一区二区三区av| 麻豆av一区二区三区久久| 亚洲电影激情视频网站| 卡通动漫国产精品| 欧美一级在线视频| 国产精品国码视频| 久久一区国产| 国产欧美日韩免费看aⅴ视频| 亚洲精品国产精品国自产在线| 亚洲一区图片| 国产欧美日韩激情| 欧美成人日韩| 午夜国产精品影院在线观看| 欧美精品日韩一区| 一本色道久久加勒比88综合| 国产精品电影网站| 欧美激情第一页xxx| 欧美日韩国产首页在线观看| 亚洲第一中文字幕| 免费视频一区| 久久精品人人| 久久激情综合网| 午夜精品美女自拍福到在线 | 亚洲淫片在线视频| 欧美亚洲日本一区| 久久蜜桃香蕉精品一区二区三区| 国产揄拍国内精品对白| 欧美日韩综合不卡| 久久野战av| 亚洲精品欧洲| 国产女精品视频网站免费| 欧美国产大片| 欧美影院在线| 亚洲国产成人久久| 亚洲欧洲精品一区二区精品久久久| 久久综合导航| 久久综合中文色婷婷| 蜜桃av一区二区三区| 狂野欧美激情性xxxx欧美| 在线日韩日本国产亚洲| 亚洲大胆视频| 亚洲成人资源| 亚洲精品视频在线观看免费| 亚洲人成绝费网站色www| 亚洲二区在线观看| 亚洲毛片av在线| 亚洲影院高清在线| 欧美一区二区三区免费视| 久久成人在线| 欧美第一黄色网| 欧美人成在线视频| 国产精品国产三级国产aⅴ浪潮| 国产精品青草久久| 国产一本一道久久香蕉| 精品不卡一区| 亚洲麻豆一区| 午夜免费电影一区在线观看| 久久精品国产清高在天天线| 嫩模写真一区二区三区三州| 欧美精品三区| 国产精品日韩精品欧美精品| 激情丁香综合| 9色精品在线| 欧美一区在线直播| 久久躁狠狠躁夜夜爽| 一本久久综合亚洲鲁鲁| 午夜精品久久久久99热蜜桃导演| 久久久久久久成人| 亚洲欧美日韩中文在线制服| 老司机成人在线视频| 欧美日韩极品在线观看一区| 国产精品揄拍500视频| 亚洲国产成人tv| 一区二区三区欧美视频| 久久精品五月| 欧美亚洲成人精品| 狠狠综合久久| 一个人看的www久久| 久久久99精品免费观看不卡| 欧美不卡视频| 国产精品专区h在线观看| 亚洲国产电影| 欧美一级片在线播放| 欧美护士18xxxxhd| 国产日韩精品一区二区三区| 91久久午夜| 国产精品国产三级国产专播品爱网| 黄色欧美日韩| 亚洲天堂成人在线观看| 久久精品视频播放| 中国亚洲黄色| 午夜视频一区| 国产日本欧洲亚洲| 亚洲一区视频| 欧美日韩在线三区| 亚洲精品综合精品自拍| 你懂的国产精品| 亚洲区国产区| 欧美激情一区二区久久久| 在线播放一区| 蜜臀久久久99精品久久久久久| 欧美日韩免费观看一区 | 精品99视频| 久久aⅴ国产欧美74aaa| 国产精品午夜在线| 欧美一区二区三区免费观看| 国产美女扒开尿口久久久| 久久久久久久综合色一本| 国产在线精品一区二区中文| 欧美日韩成人一区二区| 国产日韩一区二区三区在线播放 | 国产欧美一区二区三区沐欲 | 狂野欧美激情性xxxx| 美女脱光内衣内裤视频久久网站| 精品1区2区| 久久高清福利视频| 欧美午夜精品久久久| 亚洲毛片在线| 欧美极品aⅴ影院| 亚洲国产三级网| 久久精品国产精品亚洲|