MPU6050六軸傳感器模塊技術資料包括模塊原理圖+-STM32F1程序源碼+技術文檔資料:MPU-6000 & MPU-6050 寄存器表及其描述(中文版).pdfMPU-6000 & MPU-6050產品說明書(中文版).pdfMPU-6000 and MPU-6050 Product Specification.pdfMPU-6000 and MPU-6050 Register Map and Descriptions.pdfMPU6050六軸傳感器模塊程序PZ-MPU6050六軸傳感器模塊原理圖.pdfPZ-MPU6050六軸傳感器模塊開發手冊--普中STM32F1開發板.pdf叉積法融合陀螺和加速度核心程序詳解(圓點博士四軸).pdf姿態解算說明(Mini AHRS).pdf調試工具
上傳時間: 2021-10-15
上傳用戶:qdxqdxqdxqdx
電機驅動用tb6612,PWM和計數器都是用PWM外設,MPU6050軟狀態解算
上傳時間: 2022-03-21
上傳用戶:1208020161
針對四軸飛行器飛行性能不穩定和慣性測量單元(IMU)易受干擾、存在漂移等問題,利用慣性傳感器MPU6050采集實時數據,以經典互補濾波為基礎,提出一種可以自適應補償系數的互補濾波算法,該算法在低通濾波環節加入PI控制器,依據陀螺儀測得的角速度實時調節PI控制器補償系數。飛行器姿態控制系統采用雙閉環PID控制方法,姿態解算的歐拉角作為系統外環,陀螺儀角速度作為系統內環。最后,搭建以NI my RIO為核心控制器的四軸飛行器,通過Lab VIEW實現算法和仿真,實驗結果表明,自適應互補濾波算法可以準確解算姿態信息,雙閉環PID控制超調量小、反應靈敏,控制系統基本滿足飛行要求。
標簽: mpu6050 互補濾波 四旋翼飛控系統 雙閉環PID LabVIEW語言
上傳時間: 2022-06-13
上傳用戶:bluedrops
[摘要]在天線單元設計中采用了高頻、低噪聲放大器,以減弱天線熱噪聲及前面幾級單元電路對接收機性能的影響;基于超外差式電路結構、鏡頻抑制和信道選擇原理,選用G P2010芯片實現了射頻單元的三級變頻方案,并介紹了高穩定度本振蕩信號的合成和采樣量化器的工作原理,得到了導航電文相關提取所需要的二進制數字中頻衛星信號。[被屏蔽廣告]關鍵詞:GPS接收機靈敏度超外差鎖相環頻率合成利用GPS衛星實現導航定位時,用戶接收機的主要任務是提取衛星信號中的偽隨機噪聲碼和數據碼,以進一步解算得到接收機載體的位置、速度和時間(PVT)等導航信息。因此,GPS接收機是至關重要的用戶設備。目前實際應用的GPS接收機電路一般由天線單元、射頻單元、通信單元和解算單元等四部分組成,如圖1所示。本文在分析GPS衛星信號組成的基礎上,給出了射頻前端GP2010的原理及應用。1GPS 衛星信號的組成GPS衛星信號采用典型的碼分多址(CDMA)調制技術進行合成(如圖2所示),其完整信號主要包括載波、偽隨機碼和數據碼等三種分量。信號載波處于L波段,兩載波的中心頓率分別記作L1和1.2,衛星信號參考時鐘頻率f0為10.23MHz,信號載波L1的中心頻率為ro的154倍頻,即:fL.1=154×f0-1575,42MHz(1)其波長A 1-19.03cm:信號載波12的中心頻率為f0的120倍頻,即:fL.2-120X f0-1227.60M1z(2)其波長A 2-24.42cm.兩載波的頻率差為347.82M1z,大約是12的28.3%,這樣選擇載波頻率便于測得或消除導航信號從GPS衛星傳播至接收機時由于電離層效應而引起的傳播延遲誤差,偽隨機噪聲碼(PR N)即測距碼主要有精測距碼(P碼)和粗測距碼(C/A碼)兩種。其中P碼的碼率為10.23M12、C/A碼的碼率為1.023MHz。數據碼是GPS衛星以二進制形式發送給用戶接收機的導航定位數據,又叫導航電文或D碼,它主要包括衛星歷、衛星鐘校正、電離層延遲校正、工作狀態信息、C/A碼轉換到捕獲P碼的信息和全部衛星的概略星歷:總電文由1500位組成,分為5個子幀,每個子幀在6s內發射10個字,每個字30位,共計300位,因此數據碼的波特率為50bps.
上傳時間: 2022-06-19
上傳用戶:zhaiyawei
近些年來,衛星導航系統在我國的國民經濟建設和社會服務中的應用越來越廣闊,已經發展成為一個巨大的產業,擁有自己的衛星導航系統,也是一個國家綜合實力的重要標志。美國的GPS(全球口星定位系統)是最具有開創意義的衛星導航系統,其全球性,全能性,全天候性的導航定位,定時,測速優勢在諸多領域都有廣泛的應用。俄羅斯的GLONASS系統與GPS有很多的相同性。而我國的北斗衛星導航系統(COMPASS)是自主開發并具有完全知識產權,覆蓋我國本土及周邊區域的衛星導航系統。雖然當前我國的北斗衛星系統發展迅速,但是其它兩個系統,尤其是GPS系統在我國的應用十分廣泛,發展的相對成熟。所以在擁有自主產權的北斗衛星系統保障的同時,兼容GPS和GLONASS這兩個導航系統來達到最佳的導航效果無疑是各份保障系統最經濟可行的方案。這種COMPASS+GPS+GLONASS模式的兼容性接收機就是組合導航接收機。1.組合導航接收機功能簡介組合導航接收機最基本的功能是接收北斗衛星信號,通過解算得到用戶位置,速度,時間等信息,同時內嵌可以接收和處理GPS信號,GLONASS信號的模塊。三系統可以人工切換使其工作在單一系統模式,也可以切換到多系統模式下工作,同時還可以根據各系統狀態自動切換到最佳導航狀態。在工作的同時組合導航接收機還會實時上傳導航數據給上位機,為了用戶可以方便直觀的了解數據中道含的信息,同時控制接收機根據需要傳送測量等信息,就需要開發上位機軟件。本文介紹的就是為這種組合導航接收機設計開發的上位機軟件。該軟件不僅可以應用于這種組合接收機,也適用于北斗接收機。
上傳時間: 2022-06-24
上傳用戶:bluedrops
四軸起飛時,發出觸發信號使導航模塊開始工作,同時讀取ICM20602的加速度計、陀螺儀數據,對數據卡爾曼濾波后姿態解算,對角度與角速度采取串級PID調節。控制系統算法設計主要有ICM20602濾波算法,姿態解算算法、串級PID控制算法和定高部分控制算法。礙于篇幅所限,下面介紹最重要的串級PID控制算法和定高部分控制算法。地理坐標系中重力的水平分量為零,僅用三軸陀螺儀和三軸加速度計無法計算出航向角,由于巡線機器人保持穩定飛行只需要橫滾角(roll)和俯仰角(pitch),所以四元數轉換成歐拉角。定高控制算法采用的是增量式PID控制,定高控制的輸出最后與姿態控制的輸出疊加到四個電機的控制中。數據濾波使用的是低通濾波,采用近三次的平均值。為了防止姿態對激光測距的影響及減小高度控制對姿態控制的干擾使用歐拉角來校正高度值,即Hight=(float)Hight*(cos(roll)* cos(pitch))。將四元數轉換后的歐拉角與陀螺儀測出來的角速度進行串級PID控制,其中歐拉角作為外環,角速度作為內環。外環的PID以及內環的PD設定值為測試數據值。由于內環的角速度控制不需要無靜差,所以內環采用PD控制,為防止測量的誤差造成較大影響,外環積分需要限幅。
標簽: 傳感器
上傳時間: 2022-06-24
上傳用戶:默默
STM32飛控源碼,stm32f103主控,陀螺儀數據傳感,外加姿態解算算法
標簽: stm32
上傳時間: 2022-07-08
上傳用戶:
高度數據的準確獲取是飛控系統研制過程中極其重要的一環,是保證無人飛行器按照一定高程工作、平穩著陸的先決條件。但對于低成本慣性導航解算,位置漂移嚴重[],雖可通過加速度計姿態校正來抑制部分漂移,但解算出的速度與位置仍然不準確。因此需利用除慣導外的其它傳感器測量值作為位置觀測量參與濾波,在抑制位置漂移的情況下,修正速度與加速度,提高高程數據的精度。目前文獻中大多是將慣性導航作為一個整體,對慣導的三維位置及速度進行濾波。如SINS/GPS組合導航,通過組合導航對SINS速度及位置漂移進行抑制[2][3]。但是當只需要高度方向上的數據時,此種做法往往計算量大,步驟繁瑣,且整體濾波兼顧經度、緯度、高程等多個因素,反而影響了高度方向的濾波效果,且當SINS/GPS組合導航中的GPS信號較差時,得到的高度觀測量誤差也大。可見,當單一的高度傳感器觀測數據出現異常時,濾波后的高度也會出現異常。針對單傳感器無法適應復雜工作環境的缺點,本文結合GPS、氣壓計及慣導系統的優點,來抑制慣導高度方向上的發散。通過構建GPS與氣壓計數據的權重模型獲得高度方向觀測量,使用互補濾波算法融合慣導數據與求得的觀測量得到更為精確的高度觀測值。算法簡易,魯棒性好,可在嵌入式飛控板中實時運行。
上傳時間: 2022-07-16
上傳用戶:
四軸飛行器擁有四個旋翼,屬于多旋翼直升機。四軸飛行器具有四個成對稱分布的旋翼。它通過控制四個旋翼的旋轉速度而非機械結構來實現各種飛行動作。四軸飛行器具有成本低、機體結構簡單、沒有機械結構、飛行穩定性好、重量輕、有利于小型化無人化等特點。因此可以應用在人無法到達的一些復雜環境之中。目前四旋翼飛行器等多旋翼飛行器已經在很多行業比如航空拍攝、遙感勘測、實時監控、軍事偵察、噴灑農藥中得到了廣泛的應用,并已經形成了相關產業。四旋翼飛行器具有非線性控制、控制量多、飛行姿態控制過程復雜等特性。本課題基于實現四軸飛行器低成本小型化通用化的思路,通過研究剖析四旋翼飛行器飛行的原理,根據其數學模型和控制系統的功能要求,在MCU上實現了四旋翼飛行器的姿態數據的獲取、飛行姿態解算以及飛行姿態控制。本課題硬件上采用stm32系列STM32F103C8T632位處理器作為主控制器負責分析處理數據,根據姿態運算結果,輸出電機控制信號;主要使用慣性測量單元MPU-6050等傳感器模塊用于姿態信息的檢測;采用場效應管驅動電路來驅動空心杯電機;藍牙模塊負責和上位機進行通信以實時采集飛行數據便于分析測試。整個軟硬件系統均基于模塊化設計的思想。各傳感器采集飛行器的傳感器數據都使用通用數字接口和MCU進行數據交換和通信。軟件上,編寫飛行姿態控制軟件,在stm32單片機上實現了四元數法和卡爾曼濾波算法,解算出飛行器正確的姿態角,并使用PID控制進行姿態角的閉環控制,穩定飛行姿態。實驗結果表明,本課題設計的四軸飛行器能夠較好的自主達到穩定飛行狀態,抗擾動能力強。飛行姿態控制算法完全實現了使四旋翼飛行器能在室內平穩飛行的控制要求。
上傳時間: 2022-07-17
上傳用戶:
01 課程介紹及導學.mp4 10.2M2019-03-26 15:07 02 項目介紹及展示.mp4 24.5M2019-03-26 15:07 03 項目流程介紹及分析(1).mp4 28.4M2019-03-26 15:07 04 項目流程介紹及分析(2).mp4 17.7M2019-03-26 15:07 05 項目關鍵技術點分析之藍牙介紹.mp4 19.6M2019-03-26 15:07 06 項目關鍵技術分析之藍牙模塊HC-05介紹.mp4 30.5M2019-03-26 15:07 07 項目關鍵技術分析之傳感器和存儲技術.mp4 6.9M2019-03-26 15:07 08 項目重難點分析之藍牙協議介紹.mp4 27.4M2019-03-26 15:07 09 項目重難點分析之藍牙模塊HC-05小demo(1).mp4 25.4M2019-03-26 15:07 10 項目重難點分析之藍牙模塊HC-05小demo(2).mp4 31.9M2019-03-26 15:07 11 項目重難點分析之藍牙模塊HC-05小demo(3).mp4 44.9M2019-03-26 15:07 12 項目重難點分析之藍牙模塊HC-05小demo(4).mp4 31.9M2019-03-26 15:07 13 項目重難點分析之運動傳感器數據解算,報警策略,存儲策略.mp4 29.2M2019-03-26 15:07 14 項目實現之硬件設計簡介.mp4 26.2M2019-03-26 15:07 15 項目實現之嵌入式軟件的總體設計.mp4 23M2019-03-26 15:07 16 項目實現之嵌入式軟件各個模塊的設計.mp4 48.3M2019-03-26 15:07 17 項目實現之軟硬件聯調及項目小結.mp4 28.5M2019-03-26 15:07 思維導圖.rar
上傳時間: 2013-07-22
上傳用戶:eeworm