亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

延時(shí)燈

  • 一種改進的基于時間戳的空間音視頻同步方法

    空間多媒體通信過程中存在的不可預測的分組數據丟失、亂序,可變的鏈路傳輸及處理時延抖動以及收發端時鐘不同步與漂移等問題,這可能導致接收端在對音視頻數據進行顯示播放時產生音視頻不同步現象。為了解決此問題,提出了一種改進的基于時間戳的空間音視頻同步方法,該方法采用一種相對時間戳映射模型,結合接收端同步檢測和緩沖設計,能夠在無需全網時鐘和反饋通道的情況下,實現空間通信中的音視頻同步傳輸,并在接收端進行同步播放顯示。對該方法進行了仿真,結果表明了設計的可行性。同步前的均方根誤差SPD值平均在150 ms左右,最大能達到176.1 ms。文中方法能將SPD值控制在60 ms左右,不僅能實現音視頻同步傳輸,并且開銷很小,可應用在空間多媒體通信中。

    標簽: 音視頻

    上傳時間: 2013-11-21

    上傳用戶:comer1123

  • 工業監控和便攜式儀器的6通道SAR型ADC

    14 位 LTC®2351-14 是一款 1.5Msps、低功率 SAR 型 ADC,具有 6 個同時采樣差分輸入通道。它采用單 3V 工作電源,並具有 6 個獨立的采樣及保持放大器 (S/HA) 和一個 ADC。

    標簽: SAR ADC 工業監控 便攜式

    上傳時間: 2013-11-16

    上傳用戶:dbs012280

  • Arduino學習筆記A10_Arduino數碼管骰子實驗

    電路連接 由于數碼管品種多樣,還有共陰共陽的,下面我們使用一個數碼管段碼生成器(在文章結尾) 去解決不同數碼管的問題: 本例作者利用手頭現有的一位不知品牌的共陽數碼管:型號D5611 A/B,在Eagle 找了一個 類似的型號SA56-11,引腳功能一樣可以直接代換。所以下面電路圖使用SA56-11 做引腳說明。 注意: 1. 將數碼管的a~g 段,分別接到Arduino 的D0~D6 上面。如果你手上的數碼管未知的話,可以通過通電測量它哪個引腳對應哪個字段,然后找出a~g 即可。 2. 分清共陰還是共陽。共陰的話,接220Ω電阻到電源負極;共陽的話,接220Ω電阻到電源+5v。 3. 220Ω電阻視數碼管實際工作亮度與手頭現有原件而定,不一定需要準確。 4. 按下按鈕即停。   源代碼 由于我是按照段碼生成器默認接法接的,所以不用修改段碼生成器了,直接在段碼生成器選擇共陽極,再按“自動”生成數組就搞定。   下面是源代碼,由于偷懶不用寫循環,使用了部分AVR 語句。 PORTD 這個是AVR 的端口輸出控制語句,8 位對應D7~D0,PORTD=00001001 就是D3 和D0 是高電平。 PORTD = a;就是找出相應的段碼輸出到D7~D0。 DDRD 這個是AVR 語句中控制引腳作為輸出/輸入的語句。DDRD = 0xFF;就是D0~D7 全部 作為輸出腳了。 ARDUINO CODECOPY /* Arduino 單數碼管骰子 Ansifa 2011-12-28 */ //定義段碼表,表中十個元素由LED 段碼生成器生成,選擇了共陽極。 inta[10] = {0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90}; voidsetup() { DDRD = 0xFF; //AVR 定義PortD 的低七位全部用作輸出使用。即0xFF=B11111111對 應D7~D0 pinMode(12, INPUT); //D12用來做骰子暫停的開關 } voidloop() { for(int i = 0; i < 10; i++) { //將段碼輸出PortD 的低7位,即Arduino 的引腳D0~D6,這樣需要取出PORTD 最高位,即 D7的狀態,與段碼相加,之后再輸出。 PORTD = a[i]; delay(50); //延時50ms while(digitalRead(12)) {} //如果D12引腳高電平,則在此死循環,暫停LED 跑 動 } }      

    標簽: Arduino 10 數碼管 實驗

    上傳時間: 2013-10-15

    上傳用戶:baitouyu

  • 利用看門狗提高系統可靠性

    看門狗是一個計數器,它需要在一定的看門狗延時周期內被清零,如果沒有清零動作,看門狗電路將產生一個復位信號使系統重新啟動或建立一個非屏蔽終端、執行故障恢復子程序。

    標簽: 看門狗 可靠性

    上傳時間: 2013-10-30

    上傳用戶:曹云鵬

  • CMOS和TTL電路探討

    通常以為TTL門的速度高于“CMOS門電路。影響TTL門電路工作速度的主要因素是電路內部管子的開關特性、電路結構及內部的各電阻數值。電阻數值越大,作速度越低。管子的開關時間越長,門的工作速度越低。門的速度主要體現在輸出波形相對于輸入波形上有“傳輸延時”tpd。將tpd與空載功耗P的乘積稱“速度-功耗積”,做為器件性能的一個重要指標,其值越小,表明器件的性能越 好(一般約為幾十皮(10-12)焦耳)。與TTL門電路的情況不同,影響CMOS電路工作速度的主要因素在于電路的外部,即負載電容CL。CL是主要影響器件工作速度的原因。由CL所決定的影響CMOS門的傳輸延時約為幾十納秒。

    標簽: CMOS TTL 電路

    上傳時間: 2013-11-22

    上傳用戶:DE2542

  • 使用時鐘PLL的源同步系統時序分析

    使用時鐘PLL的源同步系統時序分析一)回顧源同步時序計算Setup Margin = Min Clock Etch Delay – Max Data Etch Delay – Max Delay Skew – Setup TimeHold Margin = Min Data Etch Delay – Max Clock Etch Delay + Min Delay Skew + Data Rate – Hold Time下面解釋以上公式中各參數的意義:Etch Delay:與常說的飛行時間(Flight Time)意義相同,其值并不是從仿真直接得到,而是通過仿真結果的后處理得來。請看下面圖示:圖一為實際電路,激勵源從輸出端,經過互連到達接收端,傳輸延時如圖示Rmin,Rmax,Fmin,Fmax。圖二為對應輸出端的測試負載電路,測試負載延時如圖示Rising,Falling。通過這兩組值就可以計算得到Etch Delay 的最大和最小值。

    標簽: PLL 時鐘 同步系統 時序分析

    上傳時間: 2013-11-05

    上傳用戶:VRMMO

  • 脈沖波形的產生和整形

    脈沖波形的產生和整形:介紹矩形脈沖波形的產生和整形電路。 在脈沖整形電路中。介紹了最常用的兩類整形電路——施密特觸發器和單穩態觸發器電路。在本章的最后,討論了廣為應用的555定時器和用它構成施密特觸發器、單穩態觸發器和多諧振蕩器的方法。 7.1單穩態觸發器 單穩態觸發器的工作特性具有如下的顯著特點; 第一,它有穩態和暫穩態兩個不同的工作狀態; 第二,在外界觸發脈沖作用下,能從穩態翻轉到暫穩態,在暫穩態維持一段時間以后,再自動返問穩態; 第三,暫穩態維持時間的長短取決于電路本身的參數,與觸發脈沖的寬度和幅度無關。 由于具備這些特點。單穩態觸發器被廣泛應用于脈沖整形、延時(產生滯后于觸發脈沖的輸出脈沖)以及定時(產生固定時間寬度的脈沖信號)等。 7.1.1脈沖波形的主要參數     獲取矩形脈沖波形的途徑不外乎有兩種:一種是利用各種形式的多諧振蕩器電路直接產生所需要的矩形脈沖,另一種則是通過各種整形電路把已有的周期性變化波形變換為符合要求的矩形脈沖。當然,在采用整形的方法獲取矩形脈沖時,是以能夠找到頻率和幅度都符合要求的一種已有電壓信號為前提的。     在同步時序電路中,作為時鐘信號的矩形脈沖控制和協調著整個系統的工作。因此,時鐘脈沖的特性直接關系到系統能否正常地工作。為了定量描述矩形脈沖的特性,通常給出圖7-1  中所標注的幾個主要參數。這些參數是: 脈沖周期  ——周期性重復的脈沖序列中,兩個相鄰脈沖之間的時間間隔。有時也使用頻率 表示單位時間內脈沖重復的次數。

    標簽: 脈沖波形

    上傳時間: 2013-10-08

    上傳用戶:gai928943

  • 時鐘分相技術應用

    摘要: 介紹了時鐘分相技術并討論了時鐘分相技術在高速數字電路設計中的作用。 關鍵詞: 時鐘分相技術; 應用 中圖分類號: TN 79  文獻標識碼:A   文章編號: 025820934 (2000) 0620437203 時鐘是高速數字電路設計的關鍵技術之一, 系統時鐘的性能好壞, 直接影響了整個電路的 性能。尤其現代電子系統對性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時鐘設計上面。但隨著系統時鐘頻率的升高。我們的系統設計將面臨一系列的問 題。 1) 時鐘的快速電平切換將給電路帶來的串擾(Crosstalk) 和其他的噪聲。 2) 高速的時鐘對電路板的設計提出了更高的要求: 我們應引入傳輸線(T ransm ission L ine) 模型, 并在信號的匹配上有更多的考慮。 3) 在系統時鐘高于100MHz 的情況下, 應使用高速芯片來達到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個系統所需要的電流增大, 發 熱量增多, 對系統的穩定性和集成度有不利的影響。 4) 高頻時鐘相應的電磁輻射(EM I) 比較嚴重。 所以在高速數字系統設計中對高頻時鐘信號的處理應格外慎重, 盡量減少電路中高頻信 號的成分, 這里介紹一種很好的解決方法, 即利用時鐘分相技術, 以低頻的時鐘實現高頻的處 理。 1 時鐘分相技術 我們知道, 時鐘信號的一個周期按相位來分, 可以分為360°。所謂時鐘分相技術, 就是把 時鐘周期的多個相位都加以利用, 以達到更高的時間分辨。在通常的設計中, 我們只用到時鐘 的上升沿(0 相位) , 如果把時鐘的下降沿(180°相位) 也加以利用, 系統的時間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時鐘分為4 個相位(0°、90°、180°和270°) , 系統的時間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時來達到時鐘分相的目的。用這種方法產生的相位差不夠準確, 而且引起的時間偏移(Skew ) 和抖動 (J itters) 比較大, 無法實現高精度的時間分辨。 近年來半導體技術的發展, 使高質量的分相功能在一 片芯片內實現成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優異的時鐘 芯片。這些芯片的出現, 大大促進了時鐘分相技術在實際電 路中的應用。我們在這方面作了一些嘗試性的工作: 要獲得 良好的時間性能, 必須確保分相時鐘的Skew 和J itters 都 比較小。因此在我們的設計中, 通常用一個低頻、高精度的 晶體作為時鐘源, 將這個低頻時鐘通過一個鎖相環(PLL ) , 獲得一個較高頻率的、比較純凈的時鐘, 對這個時鐘進行分相, 就可獲得高穩定、低抖動的分 相時鐘。 這部分電路在實際運用中獲得了很好的效果。下面以應用的實例加以說明。2 應用實例 2. 1 應用在接入網中 在通訊系統中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時鐘分為4 個相位 數據, 與其同步的時鐘信號并不傳輸。 但本地接收到數據時, 為了準確地獲取 數據, 必須得到數據時鐘, 即要獲取與數 據同步的時鐘信號。在接入網中, 數據傳 輸的結構如圖2 所示。 數據以68MBös 的速率傳輸, 即每 個bit 占有14. 7ns 的寬度, 在每個數據 幀的開頭有一個用于同步檢測的頭部信息。我們要找到與它同步性好的時鐘信號, 一般時間 分辨應該達到1ö4 的時鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統時鐘頻率應在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對整個系統設計帶來很多的困擾。 我們在這里使用鎖相環和時鐘分相技術, 將一個16MHz 晶振作為時鐘源, 經過鎖相環 89429 升頻得到68MHz 的時鐘, 再經過分相芯片AMCCS4405 分成4 個相位, 如圖3 所示。 我們只要從4 個相位的68MHz 時鐘中選擇出與數據同步性最好的一個。選擇的依據是: 在每個數據幀的頭部(HEAD) 都有一個8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個相位的時鐘去鎖存數據, 如果經某個時鐘鎖存后的數據在這個指定位置最先檢測出這 個KWD, 就認為下一相位的時鐘與數據的同步性最好(相關)。 根據這個判別原理, 我們設計了圖4 所示的時鐘分相選擇電路。 在板上通過鎖相環89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時鐘: 用這4 個 時鐘分別將輸入數據進行移位, 將移位的數據與KWD 作比較, 若至少有7bit 符合, 則認為檢 出了KWD。將4 路相關器的結果經過優先判選控制邏輯, 即可輸出同步性最好的時鐘。這里, 我們運用AMCC 公司生產的 S4405 芯片, 對68MHz 的時鐘進行了4 分 相, 成功地實現了同步時鐘的獲取, 這部分 電路目前已實際地應用在某通訊系統的接 入網中。 2. 2 高速數據采集系統中的應用 高速、高精度的模擬- 數字變換 (ADC) 一直是高速數據采集系統的關鍵部 分。高速的ADC 價格昂貴, 而且系統設計 難度很高。以前就有人考慮使用多個低速 圖5 分相技術應用于采集系統 ADC 和時鐘分相, 用以替代高速的ADC, 但由 于時鐘分相電路產生的相位不準確, 時鐘的 J itters 和Skew 比較大(如前述) , 容易產生較 大的孔徑晃動(Aperture J itters) , 無法達到很 好的時間分辨。 現在使用時鐘分相芯片, 我們可以把分相 技術應用在高速數據采集系統中: 以4 分相后 圖6 分相技術提高系統的數據采集率 的80MHz 采樣時鐘分別作為ADC 的 轉換時鐘, 對模擬信號進行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號經過 緩沖、調理, 送入ADC 進行模數轉換, 采集到的數據寫入存儲器(M EM )。各個 采集通道采集的是同一信號, 不過采樣 點依次相差90°相位。通過存儲器中的數 據重組, 可以使系統時鐘為80MHz 的采 集系統達到320MHz 數據采集率(如圖6 所示)。 3 總結 靈活地運用時鐘分相技術, 可以有效地用低頻時鐘實現相當于高頻時鐘的時間性能, 并 避免了高速數字電路設計中一些問題, 降低了系統設計的難度。

    標簽: 時鐘 分相 技術應用

    上傳時間: 2013-12-17

    上傳用戶:xg262122

  • 可編輯程邏輯及IC開發領域的EDA工具介紹

    EDA (Electronic Design Automation)即“電子設計自動化”,是指以計算機為工作平臺,以EDA軟件為開發環境,以硬件描述語言為設計語言,以可編程器件PLD為實驗載體(包括CPLD、FPGA、EPLD等),以集成電路芯片為目標器件的電子產品自動化設計過程。“工欲善其事,必先利其器”,因此,EDA工具在電子系統設計中所占的份量越來越高。下面就介紹一些目前較為流行的EDA工具軟件。 PLD 及IC設計開發領域的EDA工具,一般至少要包含仿真器(Simulator)、綜合器(Synthesizer)和配置器(Place and Routing, P&R)等幾個特殊的軟件包中的一個或多個,因此這一領域的EDA工具就不包括Protel、PSpice、Ewb等原理圖和PCB板設計及電路仿真軟件。目前流行的EDA工具軟件有兩種分類方法:一種是按公司類別進行分類,另一種是按功能進行劃分。 若按公司類別分,大體可分兩類:一類是EDA 專業軟件公司,業內最著名的三家公司是Cadence、Synopsys和Mentor Graphics;另一類是PLD器件廠商為了銷售其產品而開發的EDA工具,較著名的公司有Altera、Xilinx、lattice等。前者獨立于半導體器件廠商,具有良好的標準化和兼容性,適合于學術研究單位使用,但系統復雜、難于掌握且價格昂貴;后者能針對自己器件的工藝特點作出優化設計,提高資源利用率,降低功耗,改善性能,比較適合產品開發單位使用。 若按功能分,大體可以分為以下三類。 (1) 集成的PLD/FPGA開發環境 由半導體公司提供,基本上可以完成從設計輸入(原理圖或HDL)→仿真→綜合→布線→下載到器件等囊括所有PLD開發流程的所有工作。如Altera公司的MaxplusⅡ、QuartusⅡ,Xilinx公司的ISE,Lattice公司的 ispDesignExpert等。其優勢是功能全集成化,可以加快動態調試,縮短開發周期;缺點是在綜合和仿真環節與專業的軟件相比,都不是非常優秀的。 (2) 綜合類 這類軟件的功能是對設計輸入進行邏輯分析、綜合和優化,將硬件描述語句(通常是系統級的行為描述語句)翻譯成最基本的與或非門的連接關系(網表),導出給PLD/FPGA廠家的軟件進行布局和布線。為了優化結果,在進行較復雜的設計時,基本上都使用這些專業的邏輯綜合軟件,而不采用廠家提供的集成PLD/FPGA開發工具。如Synplicity公司的Synplify、Synopsys公司的FPGAexpress、FPGA Compiler Ⅱ等。 (3) 仿真類 這類軟件的功能是對設計進行模擬仿真,包括布局布線(P&R)前的“功能仿真”(也叫“前仿真”)和P&R后的包含了門延時、線延時等的“時序仿真”(也叫“后仿真”)。復雜一些的設計,一般需要使用這些專業的仿真軟件。因為同樣的設計輸入,專業軟件的仿真速度比集成環境的速度快得多。此類軟件最著名的要算Model Technology公司的Modelsim,Cadence公司的NC-Verilog/NC-VHDL/NC-SIM等。 以上介紹了一些具代表性的EDA 工具軟件。它們在性能上各有所長,有的綜合優化能力突出,有的仿真模擬功能強,好在多數工具能相互兼容,具有互操作性。比如Altera公司的 QuartusII集成開發工具,就支持多種第三方的EDA軟件,用戶可以在QuartusII軟件中通過設置直接調用Modelsim和 Synplify進行仿真和綜合。 如果設計的硬件系統不是很大,對綜合和仿真的要求不是很高,那么可以在一個集成的開發環境中完成整個設計流程。如果要進行復雜系統的設計,則常規的方法是多種EDA工具協調工作,集各家之所長來完成設計流程。

    標簽: EDA 編輯 邏輯

    上傳時間: 2013-11-19

    上傳用戶:wxqman

  • 電腦主板生產工藝及流程

    隨著科學技術的不斷發展,人們的生活水平的不斷提高,通信技術的不斷擴延,計算機已經涉及到各個不同的行業,成為人們生活、工作、學習、娛樂不可缺少的工具。而計算機主板作為計算機中非常重要的核心部件,其品質的好壞直接影響計算機整體品質的高低。因此在生產主板的過程中每一步都是要嚴格把關的,不能有絲毫的懈怠,這樣才能使其品質得到保證。 基于此,本文主要介紹電腦主板的SMT生產工藝流程和F/T(Function Test)功能測試步驟(F/T測試步驟以惠普H310機種為例)。讓大家了解一下完整的計算機主板是如何制成的,都要經過哪些工序以及如何檢測產品質量的。 本文首先簡單介紹了PCB板的發展歷史,分類,功能及發展趨勢,SMT及SMT產品制造系統,然后重點介紹了SMT生產工藝流程和F/T測試步驟。

    標簽: 電腦主板 生產工藝 流程

    上傳時間: 2013-11-06

    上傳用戶:paladin

主站蜘蛛池模板: 澄江县| 滕州市| 永泰县| 黄山市| 南充市| 库车县| 抚远县| 大英县| 石景山区| 伊宁市| 吕梁市| 麻阳| 南平市| 涞源县| 汝阳县| 平遥县| 兴海县| 赤城县| 龙川县| 临澧县| 兴安盟| 登封市| 中卫市| 望谟县| 桐梓县| 孙吴县| 革吉县| 平和县| 阜新| 屯昌县| 托克逊县| 天津市| 吉水县| 绥中县| 弥渡县| 鹤壁市| 望江县| 上林县| 南康市| 温宿县| 鹿邑县|