電路板故障分析 維修方式介紹 ASA維修技術 ICT維修技術 沒有線路圖,無從修起 電路板太複雜,維修困難 維修經驗及技術不足 無法維修的死板,廢棄可惜 送電中作動態維修,危險性極高 備份板太多,積壓資金 送國外維修費用高,維修時間長 對老化零件無從查起無法預先更換 維修速度及效率無法提升,造成公司負擔,客戶埋怨 投資大量維修設備,操作複雜,績效不彰
上傳時間: 2013-11-09
上傳用戶:chengxin
15.2 已經加入了有關貫孔及銲點的Z軸延遲計算功能. 先開啟 Setup - Constraints - Electrical constraint sets 下的 DRC 選項. 點選 Electrical Constraints dialog box 下 Options 頁面 勾選 Z-Axis delay欄.
上傳時間: 2013-11-12
上傳用戶:Late_Li
針對固定碼長Turbo碼適應性差的缺點,以LTE為應用背景,提出了一種幀長可配置的Turbo編譯碼器的FPGA實現方案。該設計可以依據具體的信道環境和速率要求調節信息幀長,平衡譯碼性能和系統時延。方案采用“自頂向下”的設計思想和“自底而上”的實現方法,對 Turbo編譯碼系統模塊化設計后優化統一,經時序仿真驗證后下載配置到Altera公司Stratix III系列的EP3SL150F1152C2N中。測試結果表明,系統運行穩健可靠,并具有良好的移植性;集成化一體設計,為LTE標準下Turbo碼 ASIC的開發提供了參考。
上傳時間: 2013-10-08
上傳用戶:回電話#
隨著HDL Hardware Description Language 硬件描述語言語言綜合工具及其它相關工具的推廣使廣大設計工程師從以往煩瑣的畫原理圖連線等工作解脫開來能夠將工作重心轉移到功能實現上極大地提高了工作效率任何事務都是一分為二的有利就有弊我們發現現在越來越多的工程師不關心自己的電路實現形式以為我只要將功能描述正確其它事情交給工具就行了在這種思想影響下工程師在用HDL語言描述電路時腦袋里沒有任何電路概念或者非常模糊也不清楚自己寫的代碼綜合出來之后是什么樣子映射到芯片中又會是什么樣子有沒有充分利用到FPGA的一些特殊資源遇到問題立刻想到的是換速度更快容量更大的FPGA器件導致物料成本上升更為要命的是由于不了解器件結構更不了解與器件結構緊密相關的設計技巧過分依賴綜合等工具工具不行自己也就束手無策導致問題遲遲不能解決從而嚴重影響開發周期導致開發成本急劇上升 目前我們的設計規模越來越龐大動輒上百萬門幾百萬門的電路屢見不鮮同時我們所采用的器件工藝越來越先進已經步入深亞微米時代而在對待深亞微米的器件上我們的設計方法將不可避免地發生變化要更多地關注以前很少關注的線延時我相信ASIC設計以后也會如此此時如果我們不在設計方法設計技巧上有所提高是無法面對這些龐大的基于深亞微米技術的電路設計而且現在的競爭越來越激勵從節約公司成本角度出 也要求我們盡可能在比較小的器件里完成比較多的功能 本文從澄清一些錯誤認識開始從FPGA器件結構出發以速度路徑延時大小和面積資源占用率為主題描述在FPGA設計過程中應當注意的問題和可以采用的設計技巧本文對讀者的技能基本要求是熟悉數字電路基本知識如加法器計數器RAM等熟悉基本的同步電路設計方法熟悉HDL語言對FPGA的結構有所了解對FPGA設計流程比較了解
上傳時間: 2015-01-02
上傳用戶:refent
目前,大型設計一般推薦使用同步時序電路。同步時序電路基于時鐘觸發沿設計,對時鐘的周期、占空比、延時和抖動提出了更高的要求。為了滿足同步時序設計的要求,一般在FPGA設計中采用全局時鐘資源驅動設計的主時鐘,以達到最低的時鐘抖動和延遲。 FPGA全局時鐘資源一般使用全銅層工藝實現,并設計了專用時鐘緩沖與驅動結構,從而使全局時鐘到達芯片內部的所有可配置單元(CLB)、I/O單元 (IOB)和選擇性塊RAM(Block Select RAM)的時延和抖動都為最小。為了適應復雜設計的需要,Xilinx的FPGA中集成的專用時鐘資源與數字延遲鎖相環(DLL)的數目不斷增加,最新的 Virtex II器件最多可以提供16個全局時鐘輸入端口和8個數字時鐘管理模塊(DCM)。與全局時鐘資源相關的原語常用的與全局時鐘資源相關的Xilinx器件原語包括:IBUFG、IBUFGDS、BUFG、BUFGP、BUFGCE、 BUFGMUX、BUFGDLL和DCM等,如圖1所示。
上傳時間: 2013-11-20
上傳用戶:563686540
PCB Layout Rule Rev1.70, 規範內容如附件所示, 其中分為: (1) ”PCB LAYOUT 基本規範”:為R&D Layout時必須遵守的事項, 否則SMT,DIP,裁板時無法生產. (2) “錫偷LAYOUT RULE建議規範”: 加適合的錫偷可降低短路及錫球. (3) “PCB LAYOUT 建議規範”:為製造單位為提高量產良率,建議R&D在design階段即加入PCB Layout. (4) ”零件選用建議規範”: Connector零件在未來應用逐漸廣泛, 又是SMT生產時是偏移及置件不良的主因,故製造希望R&D及採購在購買異形零件時能顧慮製造的需求, 提高自動置件的比例.
上傳時間: 2013-11-03
上傳用戶:tzl1975
為有效控制固態功率調制設備,提高系統的可調性和穩定性,介紹了一種基于現場可編程門陣列( FPGA)和微控制器(MCU) 的多路高壓IGBT 驅動觸發器的設計方法和實現電路。該觸發器可選擇內或外觸發信號,可遙控或本控,能產生多路頻率、寬度和延時獨立可調的脈沖信號,信號的輸入輸出和傳輸都使用光纖。將該觸發器用于高壓IGBT(3300 V/ 800 A) 感應疊加脈沖發生器中進行實驗測試,給出了實驗波形。結果表明,該多路高壓IGBT驅動觸發器輸出脈沖信號達到了較高的調整精度,頻寬’脈寬及延時可分別以步進1 Hz、0. 1μs、0. 1μs 進行調整,滿足了脈沖發生器的要求,提高了脈沖功率調制系統的性能。
上傳時間: 2013-10-17
上傳用戶:123456wh
隨著系統設計復雜性和集成度的大規模提高,電子系統設計師們正在從事100MHZ以上的電路設計,總線的工作頻率也已經達到或者超過50MHZ,有一大部分甚至超過100MHZ。目前約80% 的設計的時鐘頻率超過50MHz,將近50% 以上的設計主頻超過120MHz,有20%甚至超過500M。當系統工作在50MHz時,將產生傳輸線效應和信號的完整性問題;而當系統時鐘達到120MHz時,除非使用高速電路設計知識,否則基于傳統方法設計的PCB將無法工作。因此,高速電路信號質量仿真已經成為電子系統設計師必須采取的設計手段。只有通過高速電路仿真和先進的物理設計軟件,才能實現設計過程的可控性。傳輸線效應基于上述定義的傳輸線模型,歸納起來,傳輸線會對整個電路設計帶來以下效應。 · 反射信號Reflected signals · 延時和時序錯誤Delay & Timing errors · 過沖(上沖/下沖)Overshoot/Undershoot · 串擾Induced Noise (or crosstalk) · 電磁輻射EMI radiation
上傳時間: 2013-11-05
上傳用戶:tzrdcaabb
通用陣列邏輯GAL實現基本門電路的設計 一、實驗目的 1.了解GAL22V10的結構及其應用; 2.掌握GAL器件的設計原則和一般格式; 3.學會使用VHDL語言進行可編程邏輯器件的邏輯設計; 4.掌握通用陣列邏輯GAL的編程、下載、驗證功能的全部過程。 二、實驗原理 1. 通用陣列邏輯GAL22V10 通用陣列邏輯GAL是由可編程的與陣列、固定(不可編程)的或陣列和輸出邏輯宏單元(OLMC)三部分構成。GAL芯片必須借助GAL的開發軟件和硬件,對其編程寫入后,才能使GAL芯片具有預期的邏輯功能。GAL22V10有10個I/O口、12個輸入口、10個寄存器單元,最高頻率為超過100MHz。 ispGAL22V10器件就是把流行的GAL22V10與ISP技術結合起來,在功能和結構上與GAL22V10完全相同,并沿用了GAL22V10器件的標準28腳PLCC封裝。ispGAl22V10的傳輸時延低于7.5ns,系統速度高達100MHz以上,因而非常適用于高速圖形處理和高速總線管理。由于它每個輸出單元平均能夠容納12個乘積項,最多的單元可達16個乘積項,因而更為適用大型狀態機、狀態控制及數據處理、通訊工程、測量儀器等領域。ispGAL22V10的功能框圖及引腳圖分別見圖1-1和1-2所示。 另外,采用ispGAL22V10來實現諸如地址譯碼器之類的基本邏輯功能是非常容易的。為實現在系統編程,每片ispGAL22V10需要有四個在系統編程引腳,它們是串行數據輸入(SDI),方式選擇(MODE)、串行輸出(SDO)和串行時鐘(SCLK)。這四個ISP控制信號巧妙地利用28腳PLCC封裝GAL22V10的四個空腳,從而使得兩種器件的引腳相互兼容。在系統編程電源為+5V,無需外接編程高壓。每片ispGAL22V10可以保證一萬次在系統編程。 ispGAL22V10的內部結構圖如圖1-3所示。 2.編譯、下載源文件 用VHDL語言編寫的源程序,是不能直接對芯片編程下載的,必須經過計算機軟件對其進行編譯,綜合等最終形成PLD器件的熔斷絲文件(通常叫做JEDEC文件,簡稱為JED文件)。通過相應的軟件及編程電纜再將JED數據文件寫入到GAL芯片,這樣GAL芯片就具有用戶所需要的邏輯功能。 3.工具軟件ispLEVER簡介 ispLEVER 是Lattice 公司新推出的一套EDA軟件。設計輸入可采用原理圖、硬件描述語言、混合輸入三種方式。能對所設計的數字電子系統進行功能仿真和時序仿真。編譯器是此軟件的核心,能進行邏輯優化,將邏輯映射到器件中去,自動完成布局與布線并生成編程所需要的熔絲圖文件。軟件中的Constraints Editor工具允許經由一個圖形用戶接口選擇I/O設置和引腳分配。軟件包含Synolicity公司的“Synplify”綜合工具和Lattice的ispVM器件編程工具,ispLEVER軟件提供給開發者一個簡單而有力的工具。
上傳時間: 2013-11-17
上傳用戶:看到了沒有
PCB LAYOUT 術語解釋(TERMS)1. COMPONENT SIDE(零件面、正面)︰大多數零件放置之面。2. SOLDER SIDE(焊錫面、反面)。3. SOLDER MASK(止焊膜面)︰通常指Solder Mask Open 之意。4. TOP PAD︰在零件面上所設計之零件腳PAD,不管是否鑽孔、電鍍。5. BOTTOM PAD:在銲錫面上所設計之零件腳PAD,不管是否鑽孔、電鍍。6. POSITIVE LAYER:單、雙層板之各層線路;多層板之上、下兩層線路及內層走線皆屬之。7. NEGATIVE LAYER:通常指多層板之電源層。8. INNER PAD:多層板之POSITIVE LAYER 內層PAD。9. ANTI-PAD:多層板之NEGATIVE LAYER 上所使用之絕緣範圍,不與零件腳相接。10. THERMAL PAD:多層板內NEGATIVE LAYER 上必須零件腳時所使用之PAD,一般稱為散熱孔或導通孔。11. PAD (銲墊):除了SMD PAD 外,其他PAD 之TOP PAD、BOTTOM PAD 及INNER PAD 之形狀大小皆應相同。12. Moat : 不同信號的 Power& GND plane 之間的分隔線13. Grid : 佈線時的走線格點2. Test Point : ATE 測試點供工廠ICT 測試治具使用ICT 測試點 LAYOUT 注意事項:PCB 的每條TRACE 都要有一個作為測試用之TEST PAD(測試點),其原則如下:1. 一般測試點大小均為30-35mil,元件分布較密時,測試點最小可至30mil.測試點與元件PAD 的距離最小為40mil。2. 測試點與測試點間的間距最小為50-75mil,一般使用75mil。密度高時可使用50mil,3. 測試點必須均勻分佈於PCB 上,避免測試時造成板面受力不均。4. 多層板必須透過貫穿孔(VIA)將測試點留於錫爐著錫面上(Solder Side)。5. 測試點必需放至於Bottom Layer6. 輸出test point report(.asc 檔案powerpcb v3.5)供廠商分析可測率7. 測試點設置處:Setuppadsstacks
上傳時間: 2013-11-17
上傳用戶:cjf0304