亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

微型計(jì)算機(jī)原理

  • Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等

    Euler函數: m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數: 定義:phi(m) 表示小于等于m并且與m互質的正整數的個數。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實際代碼中可以用類似素數篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數的個數 設n的素因子有p1, p2, p3, … pk 包含p1, p2…的個數為n/p1, n/p2… 包含p1*p2, p2*p3…的個數為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)

    標簽: Euler lt phi 函數

    上傳時間: 2014-01-10

    上傳用戶:wkchong

  • TLC2543 中文資料

    TLC2543是TI公司的12位串行模數轉換器,使用開關電容逐次逼近技術完成A/D轉換過程。由于是串行輸入結構,能夠節省51系列單片機I/O資源;且價格適中,分辨率較高,因此在儀器儀表中有較為廣泛的應用。 TLC2543的特點 (1)12位分辯率A/D轉換器; (2)在工作溫度范圍內10μs轉換時間; (3)11個模擬輸入通道; (4)3路內置自測試方式; (5)采樣率為66kbps; (6)線性誤差±1LSBmax; (7)有轉換結束輸出EOC; (8)具有單、雙極性輸出; (9)可編程的MSB或LSB前導; (10)可編程輸出數據長度。 TLC2543的引腳排列及說明    TLC2543有兩種封裝形式:DB、DW或N封裝以及FN封裝,這兩種封裝的引腳排列如圖1,引腳說明見表1 TLC2543電路圖和程序欣賞 #include<reg52.h> #include<intrins.h> #define uchar unsigned char #define uint unsigned int sbit clock=P1^0; sbit d_in=P1^1; sbit d_out=P1^2; sbit _cs=P1^3; uchar a1,b1,c1,d1; float sum,sum1; double  sum_final1; double  sum_final; uchar duan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar wei[]={0xf7,0xfb,0xfd,0xfe};  void delay(unsigned char b)   //50us {           unsigned char a;           for(;b>0;b--)                     for(a=22;a>0;a--); }  void display(uchar a,uchar b,uchar c,uchar d) {    P0=duan[a]|0x80;    P2=wei[0];    delay(5);    P2=0xff;    P0=duan[b];    P2=wei[1];    delay(5);   P2=0xff;   P0=duan[c];   P2=wei[2];   delay(5);   P2=0xff;   P0=duan[d];   P2=wei[3];   delay(5);   P2=0xff;   } uint read(uchar port) {   uchar  i,al=0,ah=0;   unsigned long ad;   clock=0;   _cs=0;   port<<=4;   for(i=0;i<4;i++)  {    d_in=port&0x80;    clock=1;    clock=0;    port<<=1;  }   d_in=0;   for(i=0;i<8;i++)  {    clock=1;    clock=0;  }   _cs=1;   delay(5);   _cs=0;   for(i=0;i<4;i++)  {    clock=1;    ah<<=1;    if(d_out)ah|=0x01;    clock=0; }   for(i=0;i<8;i++)  {    clock=1;    al<<=1;    if(d_out) al|=0x01;    clock=0;  }   _cs=1;   ad=(uint)ah;   ad<<=8;   ad|=al;   return(ad); }  void main()  {   uchar j;   sum=0;sum1=0;   sum_final=0;   sum_final1=0;    while(1)  {              for(j=0;j<128;j++)          {             sum1+=read(1);             display(a1,b1,c1,d1);           }            sum=sum1/128;            sum1=0;            sum_final1=(sum/4095)*5;            sum_final=sum_final1*1000;            a1=(int)sum_final/1000;            b1=(int)sum_final%1000/100;            c1=(int)sum_final%1000%100/10;            d1=(int)sum_final%10;            display(a1,b1,c1,d1);           }         } 

    標簽: 2543 TLC

    上傳時間: 2013-11-19

    上傳用戶:shen1230

  • c51流水燈仿真與程序

    對應程序: #include<reg52.h> #define uint unsigned int #define uchar unsigned char uchar code tab[]={ 0x81, 0x42, 0x24, 0x18, }; void delay(uint z) { uint i,j; for(i=z;i>0;i--) for(j=120;j>0;j--); } void init() { P0=0x00; }

    標簽: c51 流水燈 仿真 程序

    上傳時間: 2014-01-17

    上傳用戶:ruan2570406

  • Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵

    Hopfield 網——擅長于聯想記憶與解迷路 實現H網聯想記憶的關鍵,是使被記憶的模式樣本對應網絡能量函數的極小值。 設有M個N維記憶模式,通過對網絡N個神經元之間連接權 wij 和N個輸出閾值θj的設計,使得: 這M個記憶模式所對應的網絡狀態正好是網絡能量函數的M個極小值。 比較困難,目前還沒有一個適應任意形式的記憶模式的有效、通用的設計方法。 H網的算法 1)學習模式——決定權重 想要記憶的模式,用-1和1的2值表示 模式:-1,-1,1,-1,1,1,... 一般表示: 則任意兩個神經元j、i間的權重: wij=∑ap(i)ap(j),p=1…p; P:模式的總數 ap(s):第p個模式的第s個要素(-1或1) wij:第j個神經元與第i個神經元間的權重 i = j時,wij=0,即各神經元的輸出不直接返回自身。 2)想起模式: 神經元輸出值的初始化 想起時,一般是未知的輸入。設xi(0)為未知模式的第i個要素(-1或1) 將xi(0)作為相對應的神經元的初始值,其中,0意味t=0。 反復部分:對各神經元,計算: xi (t+1) = f (∑wijxj(t)-θi), j=1…n, j≠i n—神經元總數 f()--Sgn() θi—神經元i發火閾值 反復進行,直到各個神經元的輸出不再變化。

    標簽: Hopfield 聯想

    上傳時間: 2015-03-16

    上傳用戶:JasonC

  • 詞法分析程序

    詞法分析程序,可對以下的C源程序進行分析:main() {int a[12] ,sum for(i=1 i<=12 i++) {for(j=1 j<=12 j++)scanf("%d",&a[i][j]) } for(i=12 i>=1 i--){ for(j=12 j>=1 j--){ if(i==j&&i+j==13)sum+=a[i][j] } } printf("%c",sum) }

    標簽: 程序

    上傳時間: 2013-12-26

    上傳用戶:skhlm

  • 經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字

    經典c程序100例==1--10 【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去       掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++)    /*以下為三重循環*/  for(j=1 j<5 j++)    for (k=1 k<5 k++)    {     if (i!=k&&i!=j&&j!=k)    /*確保i、j、k三位互不相同*/     printf("%d,%d,%d\n",i,j,k)    }

    標簽: 100 程序 10 數字

    上傳時間: 2014-01-07

    上傳用戶:lizhizheng88

  • 算法介紹 矩陣求逆在程序中很常見

    算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。

    標簽: 算法 矩陣求逆 程序

    上傳時間: 2015-04-09

    上傳用戶:wang5829

  • 一個簡單的類似鋼琴的游戲

    一個簡單的類似鋼琴的游戲,能夠發出3個8度音, 低音:1~7; 中音:Q~U或q~u; 高音:A~J或a~j;

    標簽: 鋼琴

    上傳時間: 2015-06-09

    上傳用戶:784533221

  • 經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字

    經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去        掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++)    /*以下為三重循環*/   for(j=1 j<5 j++)     for (k=1 k<5 k++)     {      if (i!=k&&i!=j&&j!=k)    /*確保i、j、k三位互不相同*/      printf("%d,%d,%d\n",i,j,k)     } }

    標簽: 100 10 C語言 程序設計

    上傳時間: 2013-12-14

    上傳用戶:hfmm633

  • Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:d

    Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。

    標簽: Floyd-Warshall Shortest Pairs Paths

    上傳時間: 2013-12-01

    上傳用戶:dyctj

主站蜘蛛池模板: 扎兰屯市| 高雄县| 遵化市| 达州市| 东安县| 图片| 肥城市| 加查县| 宣化县| 吴堡县| 民丰县| 楚雄市| 新巴尔虎左旗| 潢川县| 城固县| 饶河县| 德庆县| 杭州市| 凌海市| 泗阳县| 陆良县| 大同县| 洛宁县| 林州市| 资兴市| 谢通门县| 盘山县| 巴里| 蕲春县| 皮山县| 资兴市| 辽中县| 贵定县| 巴塘县| 仲巴县| 兴国县| 华池县| 昌邑市| 西丰县| 呼玛县| 桂东县|