算法介紹 矩陣求逆在程序中很常見,主要應用于求Billboard矩陣。按照定義的計算方法乘法運算,嚴重影響了性能。在需要大量Billboard矩陣運算時,矩陣求逆的優化能極大提高性能。這里要介紹的矩陣求逆算法稱為全選主元高斯-約旦法。 高斯-約旦法(全選主元)求逆的步驟如下: 首先,對于 k 從 0 到 n - 1 作如下幾步: 從第 k 行、第 k 列開始的右下角子陣中選取絕對值最大的元素,并記住次元素所在的行號和列號,在通過行交換和列交換將它交換到主元素位置上。這一步稱為全選主元。 m(k, k) = 1 / m(k, k) m(k, j) = m(k, j) * m(k, k),j = 0, 1, ..., n-1;j != k m(i, j) = m(i, j) - m(i, k) * m(k, j),i, j = 0, 1, ..., n-1;i, j != k m(i, k) = -m(i, k) * m(k, k),i = 0, 1, ..., n-1;i != k 最后,根據在全選主元過程中所記錄的行、列交換的信息進行恢復,恢復的原則如下:在全選主元過程中,先交換的行(列)后進行恢復;原來的行(列)交換用列(行)交換來恢復。
上傳時間: 2015-04-09
上傳用戶:wang5829
附有本人超級詳細解釋(看不懂的面壁十天!) 一、 實際問題: 希爾排序(Shell Sort)是插入排序的一種。因D.L.Shell于1959年提出而得名。它又稱“縮小增量分類法”,在時間效率上比插入、比較、冒泡等排序算法有了較大改進。能對無序序列按一定規律進行排序。 二、數學模型: 先取一個小于n的整數d1作為第一個增量,把文件的全部記錄分成d1個組。所有距離為dl的倍數的記錄放在同一個組中。先在各組內進行直接插人排序;然后,取第二個增量d2<d1重復上述的分組和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有記錄放在同一組中進行直接插入排序為止。該方法實質上是一種分組插入方法。 三、算法設計: 1、將相隔某個增量dlta[k]的元素構成一個子序列。在排序過程中,逐次減小這個增量,最后當h減到1時,進行一次插入排序,排序就完成。增量序列一般采用:dlta[k]=2t-k+1-1,其中t為排序趟數,1≤k≤t≤[log2 (n+1)],其中n為待排序序列的長度。按增量序列dlta[0..t-1]。 2、按增量dlta[k](1≤k≤t≤[log2 (n+1)])進行一趟希爾插入排序。 3、在主函數中控制程序執行流程。 4、時間復雜度:1≤k≤t≤[log2 (n+1)]時為O(n3/2)。
上傳時間: 2013-12-11
上傳用戶:天涯
Routine mampres: To obtain amplitude response from h(exp(jw)). input parameters: h :n dimensioned complex array. the frequency response is stored in h(0) to h(n-1). n :the dimension of h and amp. fs :sampling frequency (Hz). iamp:If iamp=0: The Amplitude Res. amp(k)=abs(h(k)) If iamp=1: The Amplitude Res. amp(k)=20.*alog10(abs(h(k))). output parameters: amp :n dimensioned real array. the amplitude-frequency response is stored in amp(0) to amp(n-1). Note: this program will generate a data file "filename.dat" . in chapter 2
標簽: dimensione parameters amplitude response
上傳時間: 2013-12-19
上傳用戶:xfbs821
經典C語言程序設計100例1-10 如【程序1】 題目:有1、2、3、4個數字,能組成多少個互不相同且無重復數字的三位數?都是多少? 1.程序分析:可填在百位、十位、個位的數字都是1、2、3、4。組成所有的排列后再去 掉不滿足條件的排列。 2.程序源代碼: main() { int i,j,k printf("\n") for(i=1 i<5 i++) /*以下為三重循環*/ for(j=1 j<5 j++) for (k=1 k<5 k++) { if (i!=k&&i!=j&&j!=k) /*確保i、j、k三位互不相同*/ printf("%d,%d,%d\n",i,j,k) } }
上傳時間: 2013-12-14
上傳用戶:hfmm633
《算法分析與設計》中的 “矩陣連乘程序”給定n個矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2 ,…,n-1。由于矩陣滿足乘法的結合律,根據加括號的如何確定計算矩陣連乘積的計算次序,使得依此次序計算矩陣連乘積需要的數乘次數最少。
上傳時間: 2015-11-22
上傳用戶:ma1301115706
Floyd-Warshall算法描述 1)適用范圍: a)APSP(All Pairs Shortest Paths) b)稠密圖效果最佳 c)邊權可正可負 2)算法描述: a)初始化:dis[u,v]=w[u,v] b)For k:=1 to n For i:=1 to n For j:=1 to n If dis[i,j]>dis[i,k]+dis[k,j] Then Dis[I,j]:=dis[I,k]+dis[k,j] c)算法結束:dis即為所有點對的最短路徑矩陣 3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。 考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽: Floyd-Warshall Shortest Pairs Paths
上傳時間: 2013-12-01
上傳用戶:dyctj
RMQ問題是指:對于長度為n的數列A,回答若干詢問RMQ(A,i,j)(i,j<=n),返回數列A中下標在[i,j]里的最小值下標。
上傳時間: 2013-12-26
上傳用戶:rocwangdp
給定n個矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2,…,n-1。考察這n個矩陣的連乘積A1A2…An。由于矩陣乘法滿足結合律,故計算矩陣的連乘積可以有許多不同的計算次序,這種計算次序可以用加括號的方式來確定。若一個矩陣連乘積的計算次序完全確定,則可以依此次序反復調用2個矩陣相乘的標準算法(有改進的方法,這里不考慮)計算出矩陣連乘積。若A是一個p×q矩陣,B是一個q×r矩陣,則計算其乘積C=AB的標準算法中,需要進行pqr次數乘。
上傳時間: 2016-06-18
上傳用戶:hjshhyy
K-MEANS算法 輸入:聚類個數k,以及包含 n個數據對象的數據庫。 輸出:滿足方差最小標準的k個聚類。 處理流程: (1) 從 n個數據對象任意選擇 k 個對象作為初始聚類中心; (2) 循環(3)到(4)直到每個聚類不再發生變化為止 (3) 根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;并根據最小距離重新對相應對象進行劃分; (4) 重新計算每個(有變化)聚類的均值(中心對象)
上傳時間: 2013-12-20
上傳用戶:chenjjer
題目:加密軟件 要求:(1)輸入任意一段明文M,以及密鑰K (2)根據一下公式將其轉換為密文C。 Ci = mi + K ,其中i = 0,1,……n-1 , K 為密鑰; (3)具有輸入輸出界面。
上傳時間: 2013-11-25
上傳用戶:shawvi