亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

校準(zhǔn)差

  • K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各

    K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開

    標簽: 聚類 K-MEANS k-means 對象

    上傳時間: 2016-07-31

    上傳用戶:youlongjian0

  • K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各

    K-MEANS算法: k-means 算法接受輸入量 k ;然后將n個數據對象劃分為 k個聚類以便使得所獲得的聚類滿足:同一聚類中的對象相似度較高;而不同聚類中的對象相似度較小。聚類相似度是利用各聚類中對象的均值所獲得一個“中心對象”(引力中心)來進行計算的。 k-means 算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對于所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然后再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標準測度函數開始收斂為止。一般都采用均方差作為標準測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開

    標簽: 聚類 K-MEANS k-means 對象

    上傳時間: 2013-12-19

    上傳用戶:chenlong

  • 最大偏離值 輸入 n 個無符號整數

    最大偏離值 輸入 n 個無符號整數,找出偏離平均值最遠的整數。如果有多個不同整數離平均值同時最遠,則按從小到大輸出這幾個不同整數, 其間以逗號間隔。其中,個數n 不大于300 例如,有6個數:3,6,7,1,5,4,平均值是 26/6=4.33,與 1 的差值最大。

    標簽: 輸入 符號 整數

    上傳時間: 2014-11-11

    上傳用戶:xhz1993

  • 差分方程求解 實驗步驟: 主界面下進入實驗五的“差分方程求解”子系統,輸入希望看到的輸出樣點數 輸入差分方程系數向量 輸入順序為:

    差分方程求解 實驗步驟: 主界面下進入實驗五的“差分方程求解”子系統,輸入希望看到的輸出樣點數 輸入差分方程系數向量 輸入順序為:,。其中 N+1 為差分方程兩邊系數最大數目,如果有一邊輸入系數個數小于 N+1,將按不足系數為零計算。 輸入系統初始狀態向量 輸入順序為 鼠標單擊確定按鈕,以數值和圖形兩種方式顯示單位沖激響應和輸出響應 3) 確定差分方程形式:y(k)-y(k-1)+0.35y(k-2)=2x(k)-x(k-1),

    標簽: 差分 方程 輸入 實驗

    上傳時間: 2017-07-24

    上傳用戶:zhyiroy

  • C語言算法速查手冊 書本附件

    第1章 緒論 1 1.1 程序設計語言概述 1 1.1.1 機器語言 1 1.1.2 匯編語言 2 1.1.3 高級語言 2 1.1.4 C語言 3 1.2 C語言的優點和缺點 4 1.2.1 C語言的優點 4 1.2.2 C語言的缺點 6 1.3 算法概述 7 1.3.1 算法的基本特征 7 1.3.2 算法的復雜度 8 1.3.3 算法的準確性 10 1.3.4 算法的穩定性 14 第2章 復數運算 18 2.1 復數的四則運算 18 2.1.1 [算法1] 復數乘法 18 2.1.2 [算法2] 復數除法 20 2.1.3 【實例5】 復數的四則運算 22 2.2 復數的常用函數運算 23 2.2.1 [算法3] 復數的乘冪 23 2.2.2 [算法4] 復數的n次方根 25 2.2.3 [算法5] 復數指數 27 2.2.4 [算法6] 復數對數 29 2.2.5 [算法7] 復數正弦 30 2.2.6 [算法8] 復數余弦 32 2.2.7 【實例6】 復數的函數運算 34 第3章 多項式計算 37 3.1 多項式的表示方法 37 3.1.1 系數表示法 37 3.1.2 點表示法 38 3.1.3 [算法9] 系數表示轉化為點表示 38 3.1.4 [算法10] 點表示轉化為系數表示 42 3.1.5 【實例7】 系數表示法與點表示法的轉化 46 3.2 多項式運算 47 3.2.1 [算法11] 復系數多項式相乘 47 3.2.2 [算法12] 實系數多項式相乘 50 3.2.3 [算法13] 復系數多項式相除 52 3.2.4 [算法14] 實系數多項式相除 54 3.2.5 【實例8】 復系數多項式的乘除法 56 3.2.6 【實例9】 實系數多項式的乘除法 57 3.3 多項式的求值 59 3.3.1 [算法15] 一元多項式求值 59 3.3.2 [算法16] 一元多項式多組求值 60 3.3.3 [算法17] 二元多項式求值 63 3.3.4 【實例10】 一元多項式求值 65 3.3.5 【實例11】 二元多項式求值 66 第4章 矩陣計算 68 4.1 矩陣相乘 68 4.1.1 [算法18] 實矩陣相乘 68 4.1.2 [算法19] 復矩陣相乘 70 4.1.3 【實例12】 實矩陣與復矩陣的乘法 72 4.2 矩陣的秩與行列式值 73 4.2.1 [算法20] 求矩陣的秩 73 4.2.2 [算法21] 求一般矩陣的行列式值 76 4.2.3 [算法22] 求對稱正定矩陣的行列式值 80 4.2.4 【實例13】 求矩陣的秩和行列式值 82 4.3 矩陣求逆 84 4.3.1 [算法23] 求一般復矩陣的逆 84 4.3.2 [算法24] 求對稱正定矩陣的逆 90 4.3.3 [算法25] 求托伯利茲矩陣逆的Trench方法 92 4.3.4 【實例14】 驗證矩陣求逆算法 97 4.3.5 【實例15】 驗證T矩陣求逆算法 99 4.4 矩陣分解與相似變換 102 4.4.1 [算法26] 實對稱矩陣的LDL分解 102 4.4.2 [算法27] 對稱正定實矩陣的Cholesky分解 104 4.4.3 [算法28] 一般實矩陣的全選主元LU分解 107 4.4.4 [算法29] 一般實矩陣的QR分解 112 4.4.5 [算法30] 對稱實矩陣相似變換為對稱三對角陣 116 4.4.6 [算法31] 一般實矩陣相似變換為上Hessen-Burg矩陣 121 4.4.7 【實例16】 對一般實矩陣進行QR分解 126 4.4.8 【實例17】 對稱矩陣的相似變換 127 4.4.9 【實例18】 一般實矩陣相似變換 129 4.5 矩陣特征值的計算 130 4.5.1 [算法32] 求上Hessen-Burg矩陣全部特征值的QR方法 130 4.5.2 [算法33] 求對稱三對角陣的全部特征值 137 4.5.3 [算法34] 求對稱矩陣特征值的雅可比法 143 4.5.4 [算法35] 求對稱矩陣特征值的雅可比過關法 147 4.5.5 【實例19】 求上Hessen-Burg矩陣特征值 151 4.5.6 【實例20】 分別用兩種雅克比法求對稱矩陣特征值 152 第5章 線性代數方程組的求解 154 5.1 高斯消去法 154 5.1.1 [算法36] 求解復系數方程組的全選主元高斯消去法 155 5.1.2 [算法37] 求解實系數方程組的全選主元高斯消去法 160 5.1.3 [算法38] 求解復系數方程組的全選主元高斯-約當消去法 163 5.1.4 [算法39] 求解實系數方程組的全選主元高斯-約當消去法 168 5.1.5 [算法40] 求解大型稀疏系數矩陣方程組的高斯-約當消去法 171 5.1.6 [算法41] 求解三對角線方程組的追趕法 174 5.1.7 [算法42] 求解帶型方程組的方法 176 5.1.8 【實例21】 解線性實系數方程組 179 5.1.9 【實例22】 解線性復系數方程組 180 5.1.10 【實例23】 解三對角線方程組 182 5.2 矩陣分解法 184 5.2.1 [算法43] 求解對稱方程組的LDL分解法 184 5.2.2 [算法44] 求解對稱正定方程組的Cholesky分解法 186 5.2.3 [算法45] 求解線性最小二乘問題的QR分解法 188 5.2.4 【實例24】 求解對稱正定方程組 191 5.2.5 【實例25】 求解線性最小二乘問題 192 5.3 迭代方法 193 5.3.1 [算法46] 病態方程組的求解 193 5.3.2 [算法47] 雅克比迭代法 197 5.3.3 [算法48] 高斯-塞德爾迭代法 200 5.3.4 [算法49] 超松弛方法 203 5.3.5 [算法50] 求解對稱正定方程組的共軛梯度方法 205 5.3.6 [算法51] 求解托伯利茲方程組的列文遜方法 209 5.3.7 【實例26】 解病態方程組 214 5.3.8 【實例27】 用迭代法解方程組 215 5.3.9 【實例28】 求解托伯利茲方程組 217 第6章 非線性方程與方程組的求解 219 6.1 非線性方程求根的基本過程 219 6.1.1 確定非線性方程實根的初始近似值或根的所在區間 219 6.1.2 求非線性方程根的精確解 221 6.2 求非線性方程一個實根的方法 221 6.2.1 [算法52] 對分法 221 6.2.2 [算法53] 牛頓法 223 6.2.3 [算法54] 插值法 226 6.2.4 [算法55] 埃特金迭代法 229 6.2.5 【實例29】 用對分法求非線性方程組的實根 232 6.2.6 【實例30】 用牛頓法求非線性方程組的實根 233 6.2.7 【實例31】 用插值法求非線性方程組的實根 235 6.2.8 【實例32】 用埃特金迭代法求非線性方程組的實根 237 6.3 求實系數多項式方程全部根的方法 238 6.3.1 [算法56] QR方法 238 6.3.2 【實例33】 用QR方法求解多項式的全部根 240 6.4 求非線性方程組一組實根的方法 241 6.4.1 [算法57] 梯度法 241 6.4.2 [算法58] 擬牛頓法 244 6.4.3 【實例34】 用梯度法計算非線性方程組的一組實根 250 6.4.4 【實例35】 用擬牛頓法計算非線性方程組的一組實根 252 第7章 代數插值法 254 7.1 拉格朗日插值法 254 7.1.1 [算法59] 線性插值 255 7.1.2 [算法60] 二次拋物線插值 256 7.1.3 [算法61] 全區間插值 259 7.1.4 【實例36】 拉格朗日插值 262 7.2 埃爾米特插值 263 7.2.1 [算法62] 埃爾米特不等距插值 263 7.2.2 [算法63] 埃爾米特等距插值 267 7.2.3 【實例37】 埃爾米特插值法 270 7.3 埃特金逐步插值 271 7.3.1 [算法64] 埃特金不等距插值 272 7.3.2 [算法65] 埃特金等距插值 275 7.3.3 【實例38】 埃特金插值 278 7.4 光滑插值 279 7.4.1 [算法66] 光滑不等距插值 279 7.4.2 [算法67] 光滑等距插值 283 7.4.3 【實例39】 光滑插值 286 7.5 三次樣條插值 287 7.5.1 [算法68] 第一類邊界條件的三次樣條函數插值 287 7.5.2 [算法69] 第二類邊界條件的三次樣條函數插值 292 7.5.3 [算法70] 第三類邊界條件的三次樣條函數插值 296 7.5.4 【實例40】 樣條插值法 301 7.6 連分式插值 303 7.6.1 [算法71] 連分式插值 304 7.6.2 【實例41】 驗證連分式插值的函數 308 第8章 數值積分法 309 8.1 變步長求積法 310 8.1.1 [算法72] 變步長梯形求積法 310 8.1.2 [算法73] 自適應梯形求積法 313 8.1.3 [算法74] 變步長辛卜生求積法 316 8.1.4 [算法75] 變步長辛卜生二重積分方法 318 8.1.5 [算法76] 龍貝格積分 322 8.1.6 【實例42】 變步長積分法進行一重積分 325 8.1.7 【實例43】 變步長辛卜生積分法進行二重積分 326 8.2 高斯求積法 328 8.2.1 [算法77] 勒讓德-高斯求積法 328 8.2.2 [算法78] 切比雪夫求積法 331 8.2.3 [算法79] 拉蓋爾-高斯求積法 334 8.2.4 [算法80] 埃爾米特-高斯求積法 336 8.2.5 [算法81] 自適應高斯求積方法 337 8.2.6 【實例44】 有限區間高斯求積法 342 8.2.7 【實例45】 半無限區間內高斯求積法 343 8.2.8 【實例46】 無限區間內高斯求積法 345 8.3 連分式法 346 8.3.1 [算法82] 計算一重積分的連分式方法 346 8.3.2 [算法83] 計算二重積分的連分式方法 350 8.3.3 【實例47】 連分式法進行一重積分 354 8.3.4 【實例48】 連分式法進行二重積分 355 8.4 蒙特卡洛法 356 8.4.1 [算法84] 蒙特卡洛法進行一重積分 356 8.4.2 [算法85] 蒙特卡洛法進行二重積分 358 8.4.3 【實例49】 一重積分的蒙特卡洛法 360 8.4.4 【實例50】 二重積分的蒙特卡洛法 361 第9章 常微分方程(組)初值問題的求解 363 9.1 歐拉方法 364 9.1.1 [算法86] 定步長歐拉方法 364 9.1.2 [算法87] 變步長歐拉方法 366 9.1.3 [算法88] 改進的歐拉方法 370 9.1.4 【實例51】 歐拉方法求常微分方程數值解 372 9.2 龍格-庫塔方法 376 9.2.1 [算法89] 定步長龍格-庫塔方法 376 9.2.2 [算法90] 變步長龍格-庫塔方法 379 9.2.3 [算法91] 變步長基爾方法 383 9.2.4 【實例52】 龍格-庫塔方法求常微分方程的初值問題 386 9.3 線性多步法 390 9.3.1 [算法92] 阿當姆斯預報校正法 390 9.3.2 [算法93] 哈明方法 394 9.3.3 [算法94] 全區間積分的雙邊法 399 9.3.4 【實例53】 線性多步法求常微分方程組初值問題 401 第10章 擬合與逼近 405 10.1 一元多項式擬合 405 10.1.1 [算法95] 最小二乘擬合 405 10.1.2 [算法96] 最佳一致逼近的里米茲方法 412 10.1.3 【實例54】 一元多項式擬合 417 10.2 矩形區域曲面擬合 419 10.2.1 [算法97] 矩形區域最小二乘曲面擬合 419 10.2.2 【實例55】 二元多項式擬合 428 第11章 特殊函數 430 11.1 連分式級數和指數積分 430 11.1.1 [算法98] 連分式級數求值 430 11.1.2 [算法99] 指數積分 433 11.1.3 【實例56】 連分式級數求值 436 11.1.4 【實例57】 指數積分求值 438 11.2 伽馬函數 439 11.2.1 [算法100] 伽馬函數 439 11.2.2 [算法101] 貝塔函數 441 11.2.3 [算法102] 階乘 442 11.2.4 【實例58】 伽馬函數和貝塔函數求值 443 11.2.5 【實例59】 階乘求值 444 11.3 不完全伽馬函數 445 11.3.1 [算法103] 不完全伽馬函數 445 11.3.2 [算法104] 誤差函數 448 11.3.3 [算法105] 卡方分布函數 450 11.3.4 【實例60】 不完全伽馬函數求值 451 11.3.5 【實例61】 誤差函數求值 452 11.3.6 【實例62】 卡方分布函數求值 453 11.4 不完全貝塔函數 454 11.4.1 [算法106] 不完全貝塔函數 454 11.4.2 [算法107] 學生分布函數 457 11.4.3 [算法108] 累積二項式分布函數 458 11.4.4 【實例63】 不完全貝塔函數求值 459 11.5 貝塞爾函數 461 11.5.1 [算法109] 第一類整數階貝塞爾函數 461 11.5.2 [算法110] 第二類整數階貝塞爾函數 466 11.5.3 [算法111] 變型第一類整數階貝塞爾函數 469 11.5.4 [算法112] 變型第二類整數階貝塞爾函數 473 11.5.5 【實例64】 貝塞爾函數求值 476 11.5.6 【實例65】 變型貝塞爾函數求值 477 11.6 Carlson橢圓積分 479 11.6.1 [算法113] 第一類橢圓積分 479 11.6.2 [算法114] 第一類橢圓積分的退化形式 481 11.6.3 [算法115] 第二類橢圓積分 483 11.6.4 [算法116] 第三類橢圓積分 486 11.6.5 【實例66】 第一類勒讓德橢圓函數積分求值 490 11.6.6 【實例67】 第二類勒讓德橢圓函數積分求值 492 第12章 極值問題 494 12.1 一維極值求解方法 494 12.1.1 [算法117] 確定極小值點所在的區間 494 12.1.2 [算法118] 一維黃金分割搜索 499 12.1.3 [算法119] 一維Brent方法 502 12.1.4 [算法120] 使用一階導數的Brent方法 506 12.1.5 【實例68】 使用黃金分割搜索法求極值 511 12.1.6 【實例69】 使用Brent法求極值 513 12.1.7 【實例70】 使用帶導數的Brent法求極值 515 12.2 多元函數求極值 517 12.2.1 [算法121] 不需要導數的一維搜索 517 12.2.2 [算法122] 需要導數的一維搜索 519 12.2.3 [算法123] Powell方法 522 12.2.4 [算法124] 共軛梯度法 525 12.2.5 [算法125] 準牛頓法 531 12.2.6 【實例71】 驗證不使用導數的一維搜索 536 12.2.7 【實例72】 用Powell算法求極值 537 12.2.8 【實例73】 用共軛梯度法求極值 539 12.2.9 【實例74】 用準牛頓法求極值 540 12.3 單純形法 542 12.3.1 [算法126] 求無約束條件下n維極值的單純形法 542 12.3.2 [算法127] 求有約束條件下n維極值的單純形法 548 12.3.3 [算法128] 解線性規劃問題的單純形法 556 12.3.4 【實例75】 用單純形法求無約束條件下N維的極值 568 12.3.5 【實例76】 用單純形法求有約束條件下N維的極值 569 12.3.6 【實例77】 求解線性規劃問題 571 第13章 隨機數產生與統計描述 574 13.1 均勻分布隨機序列 574 13.1.1 [算法129] 產生0到1之間均勻分布的一個隨機數 574 13.1.2 [算法130] 產生0到1之間均勻分布的隨機數序列 576 13.1.3 [算法131] 產生任意區間內均勻分布的一個隨機整數 577 13.1.4 [算法132] 產生任意區間內均勻分布的隨機整數序列 578 13.1.5 【實例78】 產生0到1之間均勻分布的隨機數序列 580 13.1.6 【實例79】 產生任意區間內均勻分布的隨機整數序列 581 13.2 正態分布隨機序列 582 13.2.1 [算法133] 產生任意均值與方差的正態分布的一個隨機數 582 13.2.2 [算法134] 產生任意均值與方差的正態分布的隨機數序列 585 13.2.3 【實例80】 產生任意均值與方差的正態分布的一個隨機數 587 13.2.4 【實例81】 產生任意均值與方差的正態分布的隨機數序列 588 13.3 統計描述 589 13.3.1 [算法135] 分布的矩 589 13.3.2 [算法136] 方差相同時的t分布檢驗 591 13.3.3 [算法137] 方差不同時的t分布檢驗 594 13.3.4 [算法138] 方差的F檢驗 596 13.3.5 [算法139] 卡方檢驗 599 13.3.6 【實例82】 計算隨機樣本的矩 601 13.3.7 【實例83】 t分布檢驗 602 13.3.8 【實例84】 F分布檢驗 605 13.3.9 【實例85】 檢驗卡方檢驗的算法 607 第14章 查找 609 14.1 基本查找 609 14.1.1 [算法140] 有序數組的二分查找 609 14.1.2 [算法141] 無序數組同時查找最大和最小的元素 611 14.1.3 [算法142] 無序數組查找第M小的元素 613 14.1.4 【實例86】 基本查找 615 14.2 結構體和磁盤文件的查找 617 14.2.1 [算法143] 無序結構體數組的順序查找 617 14.2.2 [算法144] 磁盤文件中記錄的順序查找 618 14.2.3 【實例87】 結構體數組和文件中的查找 619 14.3 哈希查找 622 14.3.1 [算法145] 字符串哈希函數 622 14.3.2 [算法146] 哈希函數 626 14.3.3 [算法147] 向哈希表中插入元素 628 14.3.4 [算法148] 在哈希表中查找元素 629 14.3.5 [算法149] 在哈希表中刪除元素 631 14.3.6 【實例88】 構造哈希表并進行查找 632 第15章 排序 636 15.1 插入排序 636 15.1.1 [算法150] 直接插入排序 636 15.1.2 [算法151] 希爾排序 637 15.1.3 【實例89】 插入排序 639 15.2 交換排序 641 15.2.1 [算法152] 氣泡排序 641 15.2.2 [算法153] 快速排序 642 15.2.3 【實例90】 交換排序 644 15.3 選擇排序 646 15.3.1 [算法154] 直接選擇排序 646 15.3.2 [算法155] 堆排序 647 15.3.3 【實例91】 選擇排序 650 15.4 線性時間排序 651 15.4.1 [算法156] 計數排序 651 15.4.2 [算法157] 基數排序 653 15.4.3 【實例92】 線性時間排序 656 15.5 歸并排序 657 15.5.1 [算法158] 二路歸并排序 658 15.5.2 【實例93】 二路歸并排序 660 第16章 數學變換與濾波 662 16.1 快速傅里葉變換 662 16.1.1 [算法159] 復數據快速傅里葉變換 662 16.1.2 [算法160] 復數據快速傅里葉逆變換 666 16.1.3 [算法161] 實數據快速傅里葉變換 669 16.1.4 【實例94】 驗證傅里葉變換的函數 671 16.2 其他常用變換 674 16.2.1 [算法162] 快速沃爾什變換 674 16.2.2 [算法163] 快速哈達瑪變換 678 16.2.3 [算法164] 快速余弦變換 682 16.2.4 【實例95】 驗證沃爾什變換和哈達瑪的函數 684 16.2.5 【實例96】 驗證離散余弦變換的函數 687 16.3 平滑和濾波 688 16.3.1 [算法165] 五點三次平滑 689 16.3.2 [算法166] α-β-γ濾波 690 16.3.3 【實例97】 驗證五點三次平滑 692 16.3.4 【實例98】 驗證α-β-γ濾波算法 693  

    標簽: C 算法 附件 源代碼

    上傳時間: 2015-06-29

    上傳用戶:cbsdukaf

  • 有限差分法

    function [alpha,N,U]=youxianchafen2(r1,r2,up,under,num,deta)      %[alpha,N,U]=youxianchafen2(a,r1,r2,up,under,num,deta)   %該函數用有限差分法求解有兩種介質的正方形區域的二維拉普拉斯方程的數值解   %函數返回迭代因子、迭代次數以及迭代完成后所求區域內網格節點處的值   %a為正方形求解區域的邊長   %r1,r2分別表示兩種介質的電導率   %up,under分別為上下邊界值   %num表示將區域每邊的網格剖分個數   %deta為迭代過程中所允許的相對誤差限      n=num+1; %每邊節點數   U(n,n)=0; %節點處數值矩陣   N=0; %迭代次數初值   alpha=2/(1+sin(pi/num));%超松弛迭代因子   k=r1/r2; %兩介質電導率之比   U(1,1:n)=up; %求解區域上邊界第一類邊界條件   U(n,1:n)=under; %求解區域下邊界第一類邊界條件   U(2:num,1)=0;U(2:num,n)=0;      for i=2:num   U(i,2:num)=up-(up-under)/num*(i-1);%采用線性賦值對上下邊界之間的節點賦迭代初值   end   G=1;   while G>0 %迭代條件:不滿足相對誤差限要求的節點數目G不為零   Un=U; %完成第n次迭代后所有節點處的值   G=0; %每完成一次迭代將不滿足相對誤差限要求的節點數目歸零   for j=1:n   for i=2:num   U1=U(i,j); %第n次迭代時網格節點處的值      if j==1 %第n+1次迭代左邊界第二類邊界條件   U(i,j)=1/4*(2*U(i,j+1)+U(i-1,j)+U(i+1,j));   end         if (j>1)&&(j                 U2=1/4*(U(i,j+1)+ U(i-1,j)+ U(i,j-1)+ U(i+1,j));    U(i,j)=U1+alpha*(U2-U1); %引入超松弛迭代因子后的網格節點處的值      end      if i==n+1-j %第n+1次迭代兩介質分界面(與網格對角線重合)第二類邊界條件   U(i,j)=1/4*(2/(1+k)*(U(i,j+1)+U(i+1,j))+2*k/(1+k)*(U(i-1,j)+U(i,j-1)));      end      if j==n %第n+1次迭代右邊界第二類邊界條件   U(i,n)=1/4*(2*U(i,j-1)+U(i-1,j)+U(i+1,j));   end   end   end   N=N+1 %顯示迭代次數   Un1=U; %完成第n+1次迭代后所有節點處的值   err=abs((Un1-Un)./Un1);%第n+1次迭代與第n次迭代所有節點值的相對誤差   err(1,1:n)=0; %上邊界節點相對誤差置零   err(n,1:n)=0; %下邊界節點相對誤差置零    G=sum(sum(err>deta))%顯示每次迭代后不滿足相對誤差限要求的節點數目G   end

    標簽: 有限差分

    上傳時間: 2018-07-13

    上傳用戶:Kemin

  • 24位ADC驅動代碼

    ADS1256 是TI(Texas I nstruments )公司推出的一款低噪聲高分辨率的24 位Si gma - Delta("- #)模數轉換器(ADC)。"- #ADC 與傳統的逐次逼近型和積分型ADC 相比有轉換誤差小而價格低廉的優點,但由于受帶寬和有效采樣率的限制,"- #ADC 不適用于高頻數據采集的場合。該款ADS1256 可適合于采集最高頻率只有幾千赫茲的模擬數據的系統中,數據輸出速率最高可為30K 采樣點/秒(SPS),有完善的自校正和系統校正系統, SPI 串行數據傳輸接口。本文結合筆者自己的應用經驗,對該ADC 的基本原理以及應用做簡要介紹。ADs1256 的總體電氣特性下面介紹在使用ADs1256 的過程中要注意的一些電氣方面的具體參數:模擬電源(AVDD )輸入范圍+ 4 . 75V !+ 5 .25V,使用的典型值為+ 5 .00V;數字電源(DVDD )輸入范圍+ 1 . 8V !+ 3 .6V,使用的典型值+ 3 .3V;參考電壓值(VREF= VREFP- VREFN)的范圍+ 0 .5V!+ 2 .6V,使用的典型值為+ 2 .5V;耗散功率最大為57mW;每個模擬輸入端(AI N0 !7 和AI NC M)相對于模擬地(AGND)的絕對電壓值范圍在輸入緩沖器(BUFFER)關閉的時候為AGND-0 .1 !AVDD+ 0 . 1 ,在輸入緩沖器打開的時候為AGND !AVDD-2 .0 ;滿刻度差分模擬輸入電壓值(VI N = AI NP -AI NN)為+ /-(2VREF/PGA);數字輸入邏輯高電平范圍0 .8DVDD!5 .25V(除D0 !D3 的輸入點平不可超過DVDD 外),邏輯低點平范圍DGND!0 .2DVDD;數字輸出邏輯高電平下限為0 .8DVDD,邏輯低電平上限為0 .2DVDD,輸出電流典型值為5mA;主時鐘頻率由外部晶體振蕩器提供給XTAL1和XTAL2 時,要求范圍為2 M!10 MHz ,僅由CLKI N 輸入提供時,范圍為0 .1 M!10 MHz 。

    標簽: ADC ADS1256

    上傳時間: 2022-06-10

    上傳用戶:

  • N系列射頻同軸連接器

    N系列射頻同軸連接器

    標簽: 射頻 同軸連接器

    上傳時間: 2013-06-29

    上傳用戶:eeworm

  • 電能表修校及裝表接電工

    電能表修校及裝表接電工

    標簽: 電能表 電工

    上傳時間: 2013-06-18

    上傳用戶:eeworm

  • 電磁場計算中的時域有限差分法(王常清) pdf版

    電磁場計算中的時域有限差分法(王常清) pdf版

    標簽: 電磁場計算 時域 有限差分

    上傳時間: 2013-04-15

    上傳用戶:eeworm

主站蜘蛛池模板: 汕头市| 民丰县| 闻喜县| 桃源县| 上虞市| 博野县| 南部县| 张家界市| 镇沅| 怀仁县| 沾益县| 吉隆县| 清徐县| 宜宾县| 于田县| 安远县| 资阳市| 西畴县| 安塞县| 正蓝旗| 湛江市| 苗栗市| 太康县| 乐东| 伊吾县| 北京市| 陵川县| 巴中市| 青浦区| 沅陵县| 射阳县| 江城| 合作市| 开远市| 无极县| 芒康县| 临夏市| 喀什市| 应用必备| 长垣县| 威宁|