-
這是臺灣鳥哥linux私房菜的電子書檔,內容是一些linux的基礎教學與架設伺服器的設定,希望大家會喜歡
標簽:
linux
上傳時間:
2014-01-18
上傳用戶:qq21508895
-
C++Primer中文版 第三版
深入系列
Primer 第三版
著
中中文文版版潘愛民張麗譯
Addison-Wesley 中國電力出版社
www.infopower.com.cn
Stanley B Lippman
J o s é e L a j o i e
標簽:
Primer
Addison-Wesley
infopower
www
上傳時間:
2014-01-14
上傳用戶:myworkpost
-
Floyd-Warshall算法描述
1)適用范圍:
a)APSP(All Pairs Shortest Paths)
b)稠密圖效果最佳
c)邊權可正可負
2)算法描述:
a)初始化:dis[u,v]=w[u,v]
b)For k:=1 to n
For i:=1 to n
For j:=1 to n
If dis[i,j]>dis[i,k]+dis[k,j] Then
Dis[I,j]:=dis[I,k]+dis[k,j]
c)算法結束:dis即為所有點對的最短路徑矩陣
3)算法小結:此算法簡單有效,由于三重循環結構緊湊,對于稠密圖,效率要高于執行|V|次Dijkstra算法。時間復雜度O(n^3)。
考慮下列變形:如(I,j)∈E則dis[I,j]初始為1,else初始為0,這樣的Floyd算法最后的最短路徑矩陣即成為一個判斷I,j是否有通路的矩陣。更簡單的,我們可以把dis設成boolean類型,則每次可以用“dis[I,j]:=dis[I,j]or(dis[I,k]and dis[k,j])”來代替算法描述中的藍色部分,可以更直觀地得到I,j的連通情況。
標簽:
Floyd-Warshall
Shortest
Pairs
Paths
上傳時間:
2013-12-01
上傳用戶:dyctj
-
使用說明
使用時打開此例題目錄下pic中的圖片,然后依次單擊按鈕“轉”、“1”、“2”、“3”、“4”和“5”,就可以實現精確的車牌定位。
具體步驟
1.24位真彩色->256色灰度圖。
2.預處理:中值濾波。
3.二值化:用一個初始閾值T對圖像A進行二值化得到二值化圖像B。
初始閾值T的確定方法是:選擇閾值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分別是最高、最低灰度值。
該閾值對不同牌照有一定的適應性,能夠保證背景基本被置為0,以突出牌照區域。
4.削弱背景干擾。對圖像B做簡單的相鄰像素灰度值相減,得到新的圖像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左邊緣直接賦值,不會影響整體效果。
5.用自定義模板進行中值濾波
區域灰度基本被賦值為0。考慮到文字是由許多短豎線組成,而背景噪聲有一大部分是孤立噪聲,用模板(1,1,1,1,1)T對G進行中值濾波,能夠得到除掉了大部分干擾的圖像C。
6.牌照搜索:利用水平投影法檢測車牌水平位置,利用垂直投影法檢測車牌垂直位置。
7.區域裁剪,截取車牌圖像。
標簽:
pic
使用說明
目錄
上傳時間:
2014-01-17
上傳用戶:851197153
-
問題描述
設有n種不同面值的硬幣,各硬幣的面值存于數組T[1:n]中。現要用這些面值的硬幣來找錢,可以實用的各種面值的硬幣個數不限。當只用硬幣面值T[1],T[2],…,T[i]時,可找出錢數j的最少硬幣個數記為C(i,j)。若只用這些硬幣面值,找不出錢數j時,記C(i,j)=∞。
編程任務
設計一個動態規劃算法,對1≤j≤L,計算出所有的C( n,j )。算法中只允許實用一個長度為L的數組。用L和n作為變量來表示算法的計算時間復雜性
數據輸入
由文件input.txt提供輸入數據。文件的第1行中有1個正整數n(n<=13),表示有n種硬幣可選。接下來的一行是每種硬幣的面值。由用戶輸入待找錢數j。
結果輸出
程序運行結束時,將計算出的所需最少硬幣個數輸出到文件output.txt中。
標簽:
上傳時間:
2016-07-28
上傳用戶:yangbo69
-
一、問題的提出:
某廠根據計劃安排,擬將n臺相同的設備分配給m個車間,各車間獲得這種設備后,可以為國家提供盈利Ci j(i臺設備提供給j號車間將得到的利潤,1≤i≤n,1≤j≤m) 。問如何分配,才使國家得到最大的盈利L
二.算法的基本思想:
利用動態規劃算法的思想,設將i臺設備分配給j-1個車間,可以為國家得到最大利潤Li (j-1)(1≤i≤n,1≤j≤m),那么將這i臺設備分配給j個車間,第j個車間只能被分配到0~i臺,所以我們只要算出當第j個車間分配到t(0<=t<=i)臺時提供的最大利潤Lt(j-1)+C(i-t)j,
標簽:
上傳時間:
2016-09-19
上傳用戶:希醬大魔王
-
function [U,center,result,w,obj_fcn]= fenlei(data)
[data_n,in_n] = size(data)
m= 2 % Exponent for U
max_iter = 100 % Max. iteration
min_impro =1e-5 % Min. improvement
c=3
[center, U, obj_fcn] = fcm(data, c)
for i=1:max_iter
if F(U)>0.98
break
else
w_new=eye(in_n,in_n)
center1=sum(center)/c
a=center1(1)./center1
deta=center-center1(ones(c,1),:)
w=sqrt(sum(deta.^2)).*a
for j=1:in_n
w_new(j,j)=w(j)
end
data1=data*w_new
[center, U, obj_fcn] = fcm(data1, c)
center=center./w(ones(c,1),:)
obj_fcn=obj_fcn/sum(w.^2)
end
end
display(i)
result=zeros(1,data_n) U_=max(U)
for i=1:data_n
for j=1:c
if U(j,i)==U_(i)
result(i)=j continue
end
end
end
標簽:
data
function
Exponent
obj_fcn
上傳時間:
2013-12-18
上傳用戶:ynzfm
-
旅行商問題(Travelling Salesman Problem, 簡記TSP,亦稱貨郎擔問題):設有n個城市和距離矩陣D=[dij],其中dij表示城市i到城市j的距離,i,j=1,2 … n,則問題是要找出遍訪每個城市恰好一次的一條回路并使其路徑長度為最短。
標簽:
Travelling
Salesman
Problem
TSP
上傳時間:
2017-09-14
上傳用戶:彭玖華
-
實驗源代碼
//Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k);
四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
標簽:
warshall
離散
實驗
上傳時間:
2016-06-27
上傳用戶:梁雪文以
-
#include "iostream" using namespace std;
class Matrix
{
private:
double** A; //矩陣A
double *b; //向量b
public:
int size;
Matrix(int );
~Matrix();
friend double* Dooli(Matrix& );
void Input();
void Disp();
};
Matrix::Matrix(int x) {
size=x;
//為向量b分配空間并初始化為0
b=new double [x];
for(int j=0;j<x;j++)
b[j]=0;
//為向量A分配空間并初始化為0
A=new double* [x];
for(int i=0;i<x;i++)
A[i]=new double [x];
for(int m=0;m<x;m++)
for(int n=0;n<x;n++)
A[m][n]=0;
}
Matrix::~Matrix() {
cout<<"正在析構中~~~~"<<endl;
delete b;
for(int i=0;i<size;i++)
delete A[i];
delete A;
}
void Matrix::Disp()
{
for(int i=0;i<size;i++)
{
for(int j=0;j<size;j++)
cout<<A[i][j]<<" ";
cout<<endl;
}
}
void Matrix::Input()
{
cout<<"請輸入A:"<<endl;
for(int i=0;i<size;i++)
for(int j=0;j<size;j++){
cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl;
cin>>A[i][j];
}
cout<<"請輸入b:"<<endl;
for(int j=0;j<size;j++){
cout<<"第"<<j+1<<"個:"<<endl;
cin>>b[j];
}
}
double* Dooli(Matrix& A) {
double *Xn=new double [A.size];
Matrix L(A.size),U(A.size);
//分別求得U,L的第一行與第一列
for(int i=0;i<A.size;i++)
U.A[0][i]=A.A[0][i];
for(int j=1;j<A.size;j++)
L.A[j][0]=A.A[j][0]/U.A[0][0];
//分別求得U,L的第r行,第r列
double temp1=0,temp2=0;
for(int r=1;r<A.size;r++){
//U
for(int i=r;i<A.size;i++){
for(int k=0;k<r-1;k++)
temp1=temp1+L.A[r][k]*U.A[k][i];
U.A[r][i]=A.A[r][i]-temp1;
}
//L
for(int i=r+1;i<A.size;i++){
for(int k=0;k<r-1;k++)
temp2=temp2+L.A[i][k]*U.A[k][r];
L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r];
}
}
cout<<"計算U得:"<<endl;
U.Disp();
cout<<"計算L的:"<<endl;
L.Disp();
double *Y=new double [A.size];
Y[0]=A.b[0];
for(int i=1;i<A.size;i++ ){
double temp3=0;
for(int k=0;k<i-1;k++)
temp3=temp3+L.A[i][k]*Y[k];
Y[i]=A.b[i]-temp3;
}
Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1];
for(int i=A.size-1;i>=0;i--){
double temp4=0;
for(int k=i+1;k<A.size;k++)
temp4=temp4+U.A[i][k]*Xn[k];
Xn[i]=(Y[i]-temp4)/U.A[i][i];
}
return Xn;
}
int main()
{
Matrix B(4);
B.Input();
double *X;
X=Dooli(B);
cout<<"~~~~解得:"<<endl;
for(int i=0;i<B.size;i++)
cout<<"X["<<i<<"]:"<<X[i]<<" ";
cout<<endl<<"呵呵呵呵呵";
return 0;
}
標簽:
道理特分解法
上傳時間:
2018-05-20
上傳用戶:Aa123456789