1前言萊鋼型鋼廠大型生產線傳動系統采用西門子SIMOVERT MASTER系列PWM交-直-交電壓型變頻器供電,變頻器采用公共直流母線式結構;冷床傳輸鏈采用4臺電機單獨傳動,每臺電機分別由獨立的逆變單元控制,逆變單元的控制方式為無速度編碼器的矢量控制,相互之間依靠速度給定的同時性保持同步。自2005年投入生產以來,冷床傳輸鏈運行較為穩(wěn)定,但2007年2月以后,冷床傳輸鏈逆變單元頻繁出現絕緣柵雙極型晶體管(Insolated Gate Bipolar Transistor,IGBT)損壞現象,具體故障情況統計見表1由表1可知,冷床傳輸鏈4臺逆變器都出現過IGBT損壞的現象,故障代碼是F025和F0272原因分析1)IGBT損壞一般是由于輸出短路或接地等外部原因造成。但從實際情況上看,檢查輸出電纜及電機等外部條件沒有問題,并且更換新的IGBT后,系統可以立即正常運行,從而排除了輸出短路或接地等外部條件造成IGBT損壞。2)IGBT存在過壓。該系統采用公共直流母線控制方式,制動電阻直接掛接于直流母線上,當逆變單元的反饋能量使直流母線電壓超過DC 715 V時,制動單元動作,進行能耗制動;此外掛接于該直流母線上的其他逆變單元并沒有出現IGBT損壞的現象,因此不是由于制動反饋過壓造成IGBT燒壞。3)由于負荷分配不均造成出力大的IGBT損壞。從實際運行波形上看,負荷分配相對較為均勻,相互差別僅為2%左右,應該不會造成IGBT損壞。此外,4只逆變單元都出現了IGBT損壞現象,如果是由于負荷分配不均造成,應該出力大的逆變單元IGBT總是燒壞,因此排除由于負荷分配不均造成IGBT損壞。4)逆變單元容量選擇不合適,裝置容量偏小造成長期過流運行,從而導致IGBT燒毀。逆變單元型號及電機參數:額定功率90kw,額定電流186A,負載電流169 A,短時電流254 A,中間同路額定電流221 A,電源電流205 A,電機功率110kw,電機額定電流205 A,電機正常運行時的電流及轉矩波形如圖1所示。
上傳時間: 2022-06-22
上傳用戶:
進年來,脈沖功率裝置的使用愈來愈廣泛。由于高功率脈沖電變換器源能夠為脈沖功率裝置的負載提供能量,是構成脈沖功率裝置的主體。本文采用LT3751為核心,采用電容、電感儲能、并通過電力電子器件配合脈沖變壓器設計了反激式功率變換器電路,并通過基于LTspice進行電路瞬態(tài)分析,以得到最佳的電路模型。LTspice IV是一款高性能Spice Il仿真器、電路圖捕獲和波形觀測器,并為簡化開關穩(wěn)壓器的仿真提供了改進和模型。凌力爾特(LINEAR)對Spice所做的改進使得開關穩(wěn)壓器的仿真速度極快,較之標準的Spice仿真器有了大幅度的提高,并且LTspice IV帶有80%的凌力爾特開關穩(wěn)壓器的Spice和Macro Model(宏模型),200多種運算放大器模型以及電阻器、晶體管和MOSFET模型,使得我們在進行電路設計仿真,特別是開關電路的設計與仿真時更加輕松。
上傳時間: 2022-06-22
上傳用戶:
電力電子技術的發(fā)展使電機驅動系統擺脫了常規(guī)兩電平逆變器拓撲的限制,電機驅動系統與多電平逆變器的結合成了新的思路。多電平逆變器的輸出電平數多,因此其輸出波形更好,在大容量交流調速系統中優(yōu)勢明顯。作為多電平逆變器的研究基礎,三電平逆變器應用最為廣泛,而其中首選的是二極管鉗位型三電平逆變器。因此采用二極管鉗位型三電平逆變器驅動PMSM的模型預測控制系統作為研究對象。在PMSM驅動系統中,位置與轉速的檢測是非常重要的,一般采用的方法是通過機械傳感器來進行測量,但這種測量方法在實際應用中有很多缺陷,會降低電機系統的穩(wěn)定性和可靠性,同時會增加成本。而無速度傳感器技術是通過檢測電機中的電流或電壓,來對電機的實際轉速和位置信息進行估計,這種技術省略了常規(guī)使用的機械傳感器,能夠實現電機系統的高精度、高動態(tài)性能的控制。因此PMSM的無速度傳感器控制技術成為了近些年的研究熱點。主要研究內容分為以下幾個方面:(1)基于同一Pl轉速調節(jié)器,設計三電平逆變器驅動PMSM模型預測轉矩控制系統,與兩電平逆變器驅動PMSMMPTC系統對比,并對兩個系統的運行性能進行對比分析。(2)為進一步提高系統響應性能,克服未知負載轉矩擾動、增強系統魯棒性,設計擴張狀態(tài)負載轉矩觀測器,進而得到將負載轉矩觀測器和基于冪函數滑模轉速調節(jié)器相結合的復合控制器。(3)設計基于分數階滑模觀測器的PMSMMPCC系統,實現對電機轉速的快速準確估計。
上傳時間: 2022-06-24
上傳用戶:xsr1983
基于LTspice的射極跟隨器仿真實驗1,實驗要求與目的(1)進一步掌握靜態(tài)工作點的調試方法,深入理解靜態(tài)工作點的作用。(2)調節(jié)電路的跟隨范圍,使輸出信號的跟隨范圍最大。(3)測量電路的電壓放大倍數、輸入電阻和輸出電阻。(4)測量電路的頻率特性。2·實驗原理在射極跟隨器電路中,信號由基極和地之間輸入,由發(fā)射極和地之間輸出,集電極交流等效接地,所以,集電極是輸入/輸出信號的公共端,故稱為共集電極電路。又由于該電路的輸出電壓是跟隨輸入電壓變化的,所以又稱為射極跟隨器。3.實驗電路射極跟隨器電路如圖 1所示。4.實驗步驟(1)靜態(tài)工作點的調整。按圖 1連接電路,輸入信號由信號發(fā)生器產生一個幅度為 1V、頻率為1kHz的正弦信號。要注意使信號不失真輸出。(2)跟隨范圍調節(jié)。增大輸入信號直到輸出出現失真,觀察出現了飽和失真還是截止失真,再增大或減小信號,使失真消除。再次增大輸入信號,若出現失真,再調節(jié)信號使輸出波形達到最大不失真輸出,此時電路的靜態(tài)工作點是最佳工作點,輸入信號是最大的跟隨范圍。最后輸入信號增加到28 v,電路達到最大不失真輸出如圖 2所示。最大輸入、輸出信號波形如圖 3所示。
上傳時間: 2022-06-26
上傳用戶:
電路見圖1當把開關K1打向“逆變”位置時,BG1導通,由時基電路NE555及外圍元件組成的無穩(wěn)態(tài)多諧振蕩器開始振蕩,其充?放電時間常數可調節(jié)?如果選擇R1=R2則輸出脈沖的占空比為50%,該多諧振蕩器的振蕩頻率f=1.443/(R1+R2+2W)C2,圖中的元件數值可使振蕩頻率調在50Hz,振蕩脈沖由役腳輸出,波形為方波,該方波經C4耦合,R3?C5積分變?yōu)槿遣ǎ@個三角波又經RPC6,第二次積分和R5?C7第三次積分,變?yōu)榻频恼也ǎㄟ^C8耦合到BG2,由BG2放大后在B1的L2線圈上輸出?當L2上端電壓為正時,D4截止,D3導通,使BGPBG6截止,BG3?BG5導通,電流由電瓶正極→B2的L1-BG5-電瓶負極;當L2上端電壓為負時,D3截止,D4導通,使BG2BG5截止,BG4?BG6導通,電流由電瓶正極一B2的L2-BG6電瓶負極?BGBG6交替導通?截止,經變壓器B2合成正負對稱的正弦波,并由L3升壓送至逆變輸出插座CZ12CZ2,供用電器使用,同時LED1(紅色)亮,指示逆變狀態(tài)?當開關打向“充電”位置時,市電經變壓器B2降壓?D5?D6全波整流?R11限流后對電瓶充電,同時LED2(綠色)亮,指示充電狀態(tài)?
上傳時間: 2022-06-27
上傳用戶:
1設計任務與要求1.1基本功能1)能夠測量正弦波、方波、三角波等交流信號的頻率;2)測量信號的頻率范圍為1HZ-9999KHZ,分辨率為1HZ:3)測量結果直接用十進制數值,通過四個數碼管顯示;4)可手動測量,手動清零;5)具有高精度、迅速測量、讀數方便等優(yōu)點。1.2擴展功能1)具有不同可測頻率范圍的多個檔位;2)有超量程警告,當測量信號頻率超過所選檔位的量程時,頻率計發(fā)出警報。2設計原理脈沖信號的頻率就是在單位時間(1s)里產生的脈沖個數,若在一定時間間隔tw內測得這個周期信號的重復變化次數為N,則其頻率可表示為:豆f-N/T(1)數字頻率計的總體框圖如圖1所示:數字頻率計由四大基本電路組成:整形系統,單穩(wěn)態(tài)觸發(fā)器構成的閘門電路,可控的計數系統、鎖存譯碼顯示電路、超量程報警系統。經過放大衰減后的被測信號(包括正弦波,三角波,方波等周期信號)經過整形電路,變成峰值為3~5V(與TTL兼容)的方波信號Vx,送入計數器的時鐘脈沖端。當門控信號到來后,閘門電路開啟,時間為Ti,計數器實現計數功能,Ti時間過后閘門關閉,計數停止,鎖存器使能端置零,計數結果被鎖存,通過數碼管可以方便讀出被測信號頻率。圖2為數字頻率計的波形圖:
上傳時間: 2022-07-01
上傳用戶:
此評估硬件的目的是演示Cree第三代碳化硅(SiC)金屬氧化物半導體場效應晶體管(MOSFET)在全橋LLC電路中的系統性能,該電路通常可用于電動汽車的快速DC充電器。 采用4L-TO247封裝的新型1000V額定器件專為SiC MOSFET設計,具有開爾文源極連接,可改善開關損耗并減少門電路中的振鈴。 它還在漏極和源極引腳之間設有一個凹口,以增加蠕變距離,以適應更高電壓的SiC MOSFET。圖1. 20kW LLC硬件采用4L-TO247封裝的最新Cree 1000V SiC MOSFET。該板旨在讓用戶輕松:在全橋諧振LLC電路中使用4L-TO247封裝的新型1000V,65mΩSiCMOSFET時,評估轉換器級效率和功率密度增益。檢查Vgs和Vds等波形以及振鈴的ID。
上傳時間: 2022-07-17
上傳用戶:zhaiyawei
高頻化、高功率密度和高效率,是DC/DC變換器的發(fā)展趨勢。傳統的硬開關變換器限制了開關頻率和功率密度的提高。移相全橋PWNZVSDC/DC變換器可以實現主開關管的ZVS,但滯后橋臂實現ZVS的負載范圍較小:整流二極管存在反向恢復問題,不利于效率的提高;輸入電壓較高時,變換器效率較低,不適合輸入電壓高和有掉電維持時間限制的高性能開關電源。LLC串聯諧振DC/DC變換器是直流變換器研究領域的熱點,可以較好的解決移相全橋PWMZVSDC/DC變換器存在的缺點。但該變換器工作過程較為復雜,難于設計和控制,目前尚處于研究階段。本文以LLC串聯諧振全橋DC/DC變換器作為研究內容。以下是本文的主要研究工作:對LLC串聯諧振全橋DC/DC變換器的工作原理進行了詳細研究,利用基頻分量近似法建立了變換器的數學模型,確定了主開關管實現ZVS的條件,推導了邊界負載條件和邊界頻率,確定了變換器的穩(wěn)態(tài)工作區(qū)域,推導了輸入,輸出電壓和開關頻率以及負載的關系。仿真結果證明了理論分析的正確性。采用擴展描述函數法建立了變換器在開關頻率變化時的小信號模型,在小信號模型的基礎上分析了系統的穩(wěn)定性,根據動態(tài)性能的要求設計了控制器。仿真結果證明了理論分析的正確性。討論了一臺500m實驗樣機的主電路和控制電路設計問題,給出了設計步驟,可以給實際裝置的設計提供參考。最后給出了實驗波形和實驗數據。實驗結果驗證了理論分析的正確性。
上傳時間: 2022-07-21
上傳用戶:
艾默生 模塊電源的并聯均流技術:n一,概述 n二,常用并聯均流技術 n三,應用實例 n四,注意事項
上傳時間: 2022-07-26
上傳用戶:
第1章 引 言產業(yè)界人士和觀察家(甚至包括那些經過多年外層空間旅行剛剛返回這個世界的人)都已經很清楚,因特網( I n t e r n e t)發(fā)展所達到的地位和其所產生的現象都不同于本世紀或上世紀所提出的任何一種技術。 I n t e r n e t的延伸和影響范圍、有關 I n t e r n e t 出版物、以及包括美國在線(A O L)、美國電報電話公司( AT & T)和微軟公司等I n t e r n e t產業(yè)界的大量風險投資者,這一切都會使我們有一種紛繁迷亂的感覺。所有這些都是通過這樣或那樣的方式與 I n t e r n e t連接起來。I n t e r n e t也是Joe Sixpack和Fortune 1000這樣的網站每天都關心、考慮和使用的唯一技術。或許I n t e r n e t是世界上少有的幾個能夠以相同的平等程度來對待每一個用戶的實體組織之一。一個企業(yè)的首席執(zhí)行官( C E O)如果想給公司提供更好的網絡服務保證,他必須建立一個專用網絡。而在I n t e r n e t中,每一個人對網絡的訪問都是平等的。I n t e r n e t的發(fā)展并沒有損害到那些在過去 1 5 0年中所發(fā)展起來的其他技術。的確,電話技術是相當重要的,它可以使我們能夠在雙方不見面的情況下通過聲音與線路另一端的人通話。同樣,汽車也改變了我們的生活,汽車的出現能夠使我們在一天之內跨越更大的距離,而這個距離要比任何其他動物多出一個數量級。電燈、無線電和電視都曾經是改善我們日常生活的十分重要的技術,擴展了我們在非睡眠狀態(tài)的時間,向我們傳播各種信息,使我們享受更多的娛樂。我們已經在很大程度上解決了生存問題。大多數人的飯桌上有足夠的食品、有溫暖的住所,并且都有一個工作場所,可以每天早出晚歸地工作。我們也可以不必被動地接收各種電視節(jié)目,而可以輕松地使用遙控器選擇欣賞自己喜愛的頻道。I n t e r n e t除了有把事情變得更好的能力外,也可能會把事情搞得更糟。在好的一方面,I n t e r n e t能夠使我們在世界范圍同人們進行對等通信;使我們能夠訪問那些存儲在數以百萬計的網絡計算機上的幾乎無限的大量信息。一些功能強大的搜索引擎能夠使我們更加簡單和迅速地實現對有用、有意義的信息資源的定位。不同階段的商務活動,包括從最初的偶然興趣直到成熟的采購定單等,都可以在 I n t e r n e t上完成。甚至于許多人已經開始幻想在將來的某天,I n t e r n e t能使我們不再需要每天早起去上班了。人們可以靠在枕頭上使用一臺膝上型計算機(或許將來可能出現的任何先進的計算機)通過撥接 I n t e r n e t對所有的商務活動和某些消遣娛樂進行管理和維護。在不利的一方面,I n t e r n e t也可能使我們成為有電子怪癖的人,使我們缺乏與其他人進行直接交流的能力。人們僅有的非睡眠時間都將被耗費在計算機的熒光屏前,不停地鍵入I n t e r n e t地址(U R L)或指向其他的超級鏈接。最令人不安的是,由于“等待回應( W F R E,waiting for reply)”而浪費的時間是不可挽回的。 W F R E現象的出現是由于I n t e r n e t上太擁塞、太慢,以至于你的瀏覽器似乎進入了一個永久“等待回應”的狀態(tài)。有時候它只是幾秒鐘的問題;另一些情況下可能是幾分鐘。你在 W F R E狀態(tài)下盯著計算機熒光屏等待所花費的時間第一部分 概 述是相當大的,這些時間的總和可能會是一個令人吃驚的數字,其數量級或許是幾個月甚至幾年。我們所討論的要點在于:1) Internet已經經歷了巨大的增長過程,并且這種增長將會繼續(xù)。2) 不論是居民用戶或者是團體用戶, I n t e r n e t都受到了同等的歡迎。對于后者, I n t e r n e t還意味著新的收入增長點。3) 一些實力很強并且有創(chuàng)造力的產業(yè)巨頭正在致力于 I n t e r n e t的應用,以便為其企業(yè)自身及其消費者提供有利條件。無庸置疑,不論是偶爾對 I n t e r n e t的臨時使用還是正式規(guī)范地應用I n t e r n e t,都將導致對I n t e r n e t更多的興趣和廣告宣傳。與此同時,也將伴隨著 I n t e r n e t應用和及其流量的成比例的增長。4) 目前I n t e r n e t的帶寬和容量還是缺乏的,這導致了 I n t e r n e t上不穩(wěn)定的響應時間和不可預知的性能。同時產生的問題是, I n t e r n e t是否有能力支持未來的、高帶寬需求的、時延敏感的應用?或者說I n t e r n e t是否有能力支持居民對帶寬容量的適度增長的需求?我們是如何進入了這樣一個不穩(wěn)定的狀態(tài)呢?這個問題有若干答案,但其中沒有一個是真正有權威性的解釋,或許還有一些是可以根本不考慮的。首先, I n t e r n e t是其自身成功的一個受害者。每一天都有新的用戶加入到 I n t e r n e t中,越來越多的人不停地使用瀏覽器通過一個We b站點搜尋他們所感興趣的下一個 We b站點。由于訪問 I n t e r n e t的價格僅是電話的市話費用附加一個適度的費率,因此并沒有一個價格上的保護手段來防止某些瀏覽者對 I n t e r n e t資源的長時間占用。另一種資源的缺乏不一定是由于網絡資源的不足引起的,而更大程度上是由于服務器的資源不足造成的。對某些服務器或服務器陣列來說,突發(fā)性的連接請求所引起的負荷和突發(fā)的頻度可能大大超過了這些服務器的處理能力。這種突發(fā)的大量的連接請求一般發(fā)生在大量的客戶試圖同時訪問同一個 We b服務器的時候。這個問題可以被認為是一個臨時性的問題,因為服務器的供應商通常會不斷地提供新型的內容服務器主機、負載平衡器、 We b緩存器等來使該問題得到緩解 。另一個問題是某些鏈路可能正好沒有足夠的帶寬來支持業(yè)務所提供的流量負荷。這個問題的部分解決方案當然是增加更多的帶寬;一些新的技術,如波分復用( W D M)技術,似乎可以為用戶提供幾乎無限的帶寬。所有這些我們上述所討論的問題都是造成 I n t e r n e t及I n t r a n e t(I n t r a n e t是I n t e r n e t在企業(yè)范圍內的一個著名的復制品)性能極其不穩(wěn)定的重要因素。在這些問題中,有很多都已經被研究清楚了;雖然其中有些諸如價格等問題是不可能在一夜之間得到解決的,但是我們至少已經知道解決方案是存在的,并且可以在不久的將來得到應用。然而,有關I n t e r n e t性能和基于I P協議進行網絡互連的最基本問題,很大程度上還在于基本 I P路由轉發(fā)處理過程和該功能的實現平臺。
標簽: ip交換技術
上傳時間: 2022-07-27
上傳用戶:fliang