我采用XC4VSX35或XC4VLX25 FPGA來連接DDR2 SODIMM和元件。SODIMM內存條選用MT16HTS51264HY-667(4GB),分立器件選用8片MT47H512M8。設計目標:當客戶使用內存條時,8片分立器件不焊接;當使用直接貼片分立內存顆粒時,SODIMM內存條不安裝。請問專家:1、在設計中,先用Xilinx MIG工具生成DDR2的Core后,管腳約束文件是否還可更改?若能更改,則必須要滿足什么條件下更改?生成的約束文件中,ADDR,data之間是否能調換? 2、對DDR2數據、地址和控制線路的匹配要注意些什么?通過兩只100歐的電阻分別連接到1.8V和GND進行匹配 和 通過一只49.9歐的電阻連接到0.9V進行匹配,哪種匹配方式更好? 3、V4中,PCB LayOut時,DDR2線路阻抗單端為50歐,差分為100歐?Hyperlynx仿真時,那些參數必須要達到那些指標DDR2-667才能正常工作? 4、 若使用DDR2-667的SODIMM內存條,能否降速使用?比如降速到DDR2-400或更低頻率使用? 5、板卡上有SODIMM的插座,又有8片內存顆粒,則物理上兩部分是連在一起的,若實際使用時,只安裝內存條或只安裝8片內存顆粒,是否會造成信號完成性的影響?若有影響,如何控制? 6、SODIMM內存條(max:4GB)能否和8片分立器件(max:4GB)組合同時使用,構成一個(max:8GB)的DDR2單元?若能,則布線阻抗和FPGA的DCI如何控制?地址和控制線的TOP圖應該怎樣? 7、DDR2和FPGA(VREF pin)的參考電壓0.9V的實際工作電流有多大?工作時候,DDR2芯片是否很燙,一般如何考慮散熱? 8、由于多層板疊層的問題,可能頂層和中間層的銅箔不一樣后,中間的夾層后度不一樣時,也可能造成阻抗的不同。請教DDR2-667的SODIMM在8層板上的推進疊層?
標簽: FPGA DDR2 連接 問題討論
上傳時間: 2013-10-12
上傳用戶:han_zh
RF設計中經常遇到阻抗計算問題,Smith Chart是一種方便,直觀的實用方法
標簽: Smith 彩色
上傳時間: 2013-10-19
上傳用戶:hebmuljb
作者RICHARD CHI-HSI LI,結合自己20年RF設計經驗,整理的RF設計技術與經驗,工程性很強,從最基本的LNA、MIXERS、差分對等講起,涉及到阻抗匹配,接地,天線設計,RF系統分析,是一本很不錯的書。英文版
標簽: RF設計 經驗
上傳時間: 2013-10-30
上傳用戶:ve3344
本書全面論述了信號完整性問題。主要講述了信號完整性和物理設計概論,帶寬、電感和特性阻抗的實質含義,電阻、電容、電感和阻抗的相關分析,解決信號完整性問題的四個實用技術手段
標簽: 信號完整性 分
上傳時間: 2013-11-14
上傳用戶:372825274
文中應用電磁場全波仿真工具SIwave構建信號跨層走線模型,從電源分配網絡(PDN)阻抗的角度分析了跨層走線對信號傳輸的影響,同時使用添加電容的方法優化信號傳輸路徑,并對電容的選取及其位置的確定進行了研究,為PCB設計提供參考。
標簽: 轉換 信號傳輸 傳輸
上傳時間: 2014-01-20
上傳用戶:448949
針對太浦閘監控系統現場控制單元現場總線通信網絡存在的問題,根據現場勘測分析,得出可能導致此問題的原因有:網絡拓撲結構不合理、總線特性阻抗的連續性不好、系統保護措施不夠,提出了采用RS485 集線器來實現星型接法,使網絡拓撲結構合理,并通過其光電隔離的防雷的功能,加強系統的保護,同時在總線的終端串接電阻來改善總線特性阻抗的連續性,對原有現場總線通信網絡進行改造。改造后系統運行穩定可靠,效果良好。
標簽: 監控系統 現場總線 可靠性研究 通信網絡
上傳時間: 2013-10-16
上傳用戶:agent
木紋狀的干擾 這種干擾的出現,輕微時不會淹沒正常圖像,而嚴重時圖像就無法觀看了(甚至破壞同步)。這種故障現象產生的原因較多也較復雜。大致有如下幾種原因:(1)視頻傳輸線的質量不好,特別是屏蔽性能差(屏蔽網不是質量很好的銅線網,或屏蔽網過稀而起不到屏蔽作用)。與此同時,這類視頻線的線電阻過大,因而造成信號產生較大衰減也是加重故障的原因。此外,這類視頻線的特性阻抗不是75Ω以及參數超出規定也是產生故障的原因之一。由于產生上述的干擾現象不一定就是視頻線不良而產生的故障,因此這種故障原因在判斷時要準確和慎重。只有當排除了其它可能后,才能從視頻線不良的角度去考慮。若真是電纜質量問題,最好的辦法當然是把所有的這種電纜全部換掉,換成符合要求的電纜,這是徹底解決問題的最好辦法。
標簽: 圖像干擾
上傳時間: 2013-10-27
上傳用戶:Wwill
第一章 虛擬儀器及labview入門 1.1 虛擬儀器概述 1.2 labview是什么? 1.3 labview的運行機制 1.3.1 labview應用程序的構成 1.3.2 labview的操作模板 1.4 labview的初步操作 1.4.1 創建VI和調用子VI 1.4.2 程序調試技術 1.4.3 子VI的建立 1.5 圖表(Chart)入門 第二章 程序結構 2.1 循環結構 2.1.1 While 循環 2.1.2 移位寄存器 2.1.3 For循環 2.2 分支結構:Case 2.3 順序結構和公式節點 2.3.1 順序結構 2.3.2 公式節點 第三章 數據類型:數組、簇和波形(Waveform) 3.1 數組和簇 3.2 數組的創建及自動索引 3.2.1 創建數組 3.2.2 數組控制對象、常數對象和顯示對象 3.2.3 自動索引 3.3 數組功能函數 3.4 什么是多態化(Polymorphism)? 3.5 簇 3.5.1 創建簇控制和顯示 3.5.2 使用簇與子VI傳遞數據 3.5.3 用名稱捆綁與分解簇 3.5.4 數組和簇的互換 3.6 波形(Waveform)類型 第四章 圖形顯示 4.1 概述 4.2 Graph控件 4.3 Chart的獨有控件 4.4 XY圖形控件(XY Graph) 4.5 強度圖形控件(Intensity Graph) 4.6 數字波形圖控件(Digital Waveform Graph) 4.7 3D圖形顯示控件(3D Graph) 第五章 字符串和文件I/ 5.1 字符串 5.2 文件的輸入/輸出(I/O) 5.2.1 文件 I/O 功能函數 5.2.2 將數據寫入電子表格文 5.3 數據記錄文件(datalog file) 第六章 數據采集 6.1 概述 6.1.1 采樣定理與抗混疊濾波器 6.1.2 數據采集系統的構成 6.1.3 模入信號類型與連接方式 6.1.4 信號調理 6.1.5 數據采集問題的復雜程度評估 6.2 緩沖與觸發 6.2.1 緩沖(Buffers) 6.2.2 觸發(Triggering) 6.3 模擬I/O(Analog I/O) 6.3.1 基本概念 6.3.2 簡單 Analog I/O 6.3.3 中級Analog I/O 6.4 數字I/O(Digital I/O) 6.5 采樣注意事項 6.5.1 采樣頻率的選擇 6.5.2 6.5.3 多任務環境 6.6 附:PCI-MIO-16E-4數據采集卡簡介 第七章 信號分析與處理 7.1 概述 7.2 信號的產生 7.3 標準頻率 7.4 數字信號處理 7.4.1 FFT變換 7.4.2 窗函數 7.4.3 頻譜分析 7.4.4 數字濾波 7.4.5 曲線擬合 第八章 labview程序設計技巧 8.1 局部變量和全局變量 8.2 屬性節點 8.3 VI選項設置 第九章 測量專題 9.1 概述 9.1.1 模入信號類型與連接方式 9.1.2 信號調理 9.2 電壓測量 9.3 頻率測量 9.4 相位測量 9.5 功率測量 9.6 阻抗測量 9.7 示波器 9.8 波形記錄與回放 9.9 元件伏安特性的自動測試 9.10 掃頻儀 9.11 函數發生器 9.12 實驗數據處理 9.13 頻域分析 9.14 時域分析 第十章 網絡與通訊 第十一章 儀器控制
標簽: labview 12.25 清華 教程
上傳時間: 2013-11-06
上傳用戶:15070202241
第1章 微帶扇形偏置電路基本理論之一 1 第2章 扇形微帶偏置理論之二 4 第3章 利用ADS仿真設計扇形微帶偏置的整個過程 6 3.1 計算10GHz時四分之一波長高阻線(假設設計阻抗為100歐)的長度和寬度。 7 3.2 將高阻線和扇形微帶放入電路中,并仿真和優化(注意優化的變量都有哪些) 7 3.3 仿真結果分析(關鍵) 9 3.4 生成版圖 10 3.5 導出到autoCAD中并填充 11 第4章 有助于加深理解扇形微帶偏置原理的ADS仿真分析 11 4.1 單根四分之一波長微帶線的仿真 11 4.2 四分之一波長微帶線+扇形微帶線的仿真 12 4.3 我的理解 12
標簽: ADS 詳細設計 過程
上傳時間: 2013-10-15
上傳用戶:lanhuaying
第一章 微波集成電路傳輸線 第二章 微波集成電路的主要元件 第三章 微波集成電路的貼氧體器件 第四章 微波集成電路的濾波器 第五章 阻抗變換器、耦合器和功率分配器 第六章 微波集成的噪聲放大器 第七章 微波集成變頻器 第八章 集成微波固態源 第九章 微波集成控制電路
標簽: 集成電路設計 家
上傳時間: 2013-11-07
上傳用戶:jiwy
蟲蟲下載站版權所有 京ICP備2021023401號-1