1.1首先安裝J-Link驅動>開發(fā)軟件\Setup_JLinkARM_V468,雙擊要安裝的“Setup JLinkARMV468.exe",>安裝過程全選“next”直到安裝成功,>將JLINK插接到電腦的USB口,即可在我的電腦\管理\設備管理器\通用串行總線控制器中看到一個J-Link driver。舵機是一種位置(角度)伺服的驅動器,適用于需要角度不斷變化并可以保持的控制系統(tǒng)。舵機是一種俗稱,其實是一種伺服馬達。控制信號由接收機的通道進入信號調制芯片,獲得直流偏置電壓。內部有一個基準電路,產生周期為20ms,寬度為1.5ms的基準信號,將獲得的直流偏置電壓與電位器的電壓比較,獲得電壓差輸出。電壓差的正負輸出到電機驅動芯片決定電機的正反轉。當電機轉速一定時,通過級聯(lián)減速齒輪帶動電位器旋轉,使得電壓差為0,電機停止轉動。
標簽: stm32 驅動
上傳時間: 2022-07-05
上傳用戶:
基于STM32單片機的LED驅動芯片JXI5020GP的驅動源碼
標簽: jxi5020gp stm32 驅動
上傳時間: 2022-07-07
上傳用戶:aben
本文闡述了利用DRV8825驅動步進電機的工作原理、使用方法并給出了具體的硬件和軟件設計。在此基礎上介紹了德州儀器公司的步進電機驅動芯片DRV8825,該芯片具有片上 1/32 微步進分度器的 2.5A 雙極步進電機驅動器,特別適合驅動小型步進電機。目前被廣泛應用在3D打印機、微型步進電機上,具備一定的實用價值。步進電機是將電脈沖信號轉變?yōu)榻俏灰苹蚓€位移的開環(huán)控制元,可以分別通過控制脈沖個數和頻率,從而達到準確定位和調速的目的,在機電一體化產品中有著廣泛的應用。設計中常用的步進電機又有單極型和雙極型之分。相對而言,單極型電機雖然應用效率較低,但是驅動電路簡單,在早些年有較大的成本優(yōu)勢,特別是在高電壓、大電流的應用中。不過近年來,隨著各大廠家雙極型電機專用驅動芯片的大量推出,在性能不斷提高的同時,價格也在不斷下降,再綜合了其占用 PCB 空間小,控制簡單等優(yōu)點[1-3].采用雙極型電機及專用驅動芯片取代單極性電機已經成為了一種趨勢。本文將介紹一種雙極型電機專用控制芯片 DRV8825,并提供一個基于該芯片的打印機電機驅動電路設計方案。
標簽: drv8825 步進電機
上傳時間: 2022-07-10
英飛凌EiceDRIVER門極驅動芯片選型指南2019門極驅動芯片相當于控制信號(數字或模擬控制器)與功率器件(IGBT、MOSFET、SiC MOSFET和GaN HEMT)之間的接口。集成的門極驅動解決方案有助于您降低設計復雜度,縮短開發(fā)時間,節(jié)省用料(BOM)及電路板空間,相較于分立的方式實現的門極驅動解決方案,可提高方案的可靠度。每一個功率器件都需要一個門極驅動,同時每一個門極驅動都需要一個功率器件。英飛凌提供一系列擁有各種結構類型、電壓等級、隔離級別、保護功能和封裝選項的驅動芯片產品。這些靈活的門極驅動芯片是英飛凌分立式器件和模塊——包括硅MOSFET(CoolMOS?、OptiMOS?和StrongIRFET?)和碳化硅MOSFET(CoolSiC?)、氮化鎵HEMT(CoolGaN?),或者作為集成功率模塊的一部分(CIPOS? IPM和iMOTION? smart IPM)——最完美的搭檔。
標簽: 門極驅動
上傳時間: 2022-07-16
LED行夜熱門資料,花了幾年時間整理的。希望對大家有用
標簽: LED 驅動芯片 方案
上傳時間: 2013-04-24
上傳用戶:zxh1986123
近年來,隨著永磁材料的發(fā)展,永磁同步電機應用日益廣泛。永磁同步電機根據反電動勢和電流波形的不同,可分為梯形波永磁同步電機(無刷直流電機)和正弦波永磁同步電機(永磁同步電機)。正弦波永磁同步電機為實現其正弦波驅動控制需要連續(xù)的轉子位置信號,通常采用機械位置傳感器(旋轉變壓器、光電編碼器等),機械位置傳感器雖可以提供高精度的轉子位置信息,但其體積大,價格高,增加了轉子的慣量,且性能易受環(huán)境因素的影響,限制了永磁同步電機的應用場合。近年來受到廣泛的關注的無位置傳感器技術,是通過檢測反電動勢(電壓)或電流等過零點獲取轉子的位置信號,此技術雖取消了機械位置傳感器,但存在控制復雜,位置檢測精度不高,運行轉速范圍受到限制等問題。為解決上述問題,本文研究采用低成本的低分辨率位置傳感器取代機械位置傳感器,通過位置估算法得到高分辨率的轉子位置信號,以實現永磁同步電機的正弦波驅動控制問題。 首先,本文分析了傳統(tǒng)的采用位置區(qū)間的平均速度和采用平均速度并引用平均加速度實現位置估算法的原理,針對其不足提出了一種改進的方法,該法通過對位置區(qū)間初始速度的估算,可以顯著提高速度、位置的估算精度。本文建立上述三種位置估算法的Matlab仿真模型,并對其進行了仿真研究,仿真結果表明:改進位置估算方法即使在加減速等動態(tài)性能過程中也能保持較小的位置誤差,性能明顯優(yōu)于傳統(tǒng)的方法。 其次,完成了以TI公司的數子信號處理器(DSP)TMS320LF2407A為主控芯片,以IR公司IR2110為驅動芯片采用低分辨率位置傳感器的正弦波永磁同步電機控制系統(tǒng)的硬件電路的設計和調試工作。探討了正弦波永磁同步電機在采用無電流傳感器的電流開環(huán)控制時的控制策略問題。在此情況下電壓相位角φ對電機運行性能有重要的影響,為得到最佳的φ=f(ω)曲線,需根據負載特性進行優(yōu)化。 最后,完成了基于TMS320LF2407A采用低分辨率位置傳感器的正弦波永磁同步電機的軟件設計,文中詳細討論了位置估算程序和實現SVPWM程序的設計和調試,并對其進行了實驗驗證。
標簽: 分辨率 位置傳感器 正弦波
上傳時間: 2013-07-23
上傳用戶:shwjl
數字技術、電力電子技術以及控制論的進步推動弧焊電源從模擬階段發(fā)展到數字階段。數字化逆變弧焊電源不僅可靠性高、控制精度高而且容易大規(guī)模集成、方便升級,成為焊機的發(fā)展方向,推動了焊接產業(yè)的巨大發(fā)展。針對傳統(tǒng)的埋弧焊電源存在的體積大、控制電路復雜、可靠性差等問題,本文提出了雙逆變結構的焊機主電路實現方法和基于“MCU+DSP”的數字化埋弧焊控制系統(tǒng)的設計方案。 本文詳細介紹了埋弧焊的特點和應用,從主電源、控制系統(tǒng)兩個方面闡述了數字化逆變電源的發(fā)展歷程,對數字化交流方波埋弧焊的國內外研究現狀進行了深入探討,設計了雙逆變結構的數字化焊接系統(tǒng),實現了穩(wěn)定的交流方波輸出。 根據埋弧焊的電弧特點和交流方波的輸出特性,本文采用雙逆變結構設計焊機主電路,一次逆變電路選用改進的相移諧振軟開關,二次逆變電路選用半橋拓撲形式,并研究了兩次逆變過程的原理和控制方式,進行了相關參數計算。根據主電路電路的設計要求,電流型PWM控制芯片UC3846用于一次逆變電路的控制并抑制變壓器偏磁,選擇集成驅動芯片EXB841作為二次逆變電路的驅動。 本課題基于“MCU+DSP”的雙機主控系統(tǒng)來實現焊接電源的控制。其中主控板單片機ATmega64L主要負責送絲機和行走小車的速度反饋及閉環(huán)PI運算、電機PWM斬波控制以及過壓、過流、過熱等保護電路的控制。DSP芯片MC56F8323則主要負責焊接電流、焊接電壓的反饋和閉環(huán)PI運算以及控制焊接時序,以確保良好的電源外特性輸出。外部控制箱通過按鍵、旋轉編碼器進行焊接參數和焊接狀態(tài)的給定,預置和顯示各種焊接參數,快速檢測焊機狀態(tài)并加以保護。 主控板芯片之間通過SPI通訊,外部控制箱和主控板之間則通過RS—485協(xié)議交換數據。通過軟件設計,實現焊接參數的PI調節(jié),精確控制了焊接過程,并進行了抗干擾設計,解決了影響數字化埋弧焊電源穩(wěn)定運行的電磁兼容問題。 系統(tǒng)分析了交流方波參數的變化對焊接效果的影響,通過對焊接電流、焊接電壓的波形分析,證明了本課題設計的埋弧焊電源能夠精確控制引弧、焊接、 收弧等焊接時序,并可以有效抑制功率開關器件的過流和變壓器的偏磁問題,取得了良好的焊接效果。 最后,對數字化交流方波埋弧焊的控制系統(tǒng)和焊接試驗進行了總結,分析了系統(tǒng)存在的問題和不足,并指出了新的研究方向。 關鍵詞:埋弧焊;交流方波;數字化;逆變;軟開關技術
標簽: 數字化 交流 埋弧焊
上傳用戶:kjgkadjg
本課題完成了基于FPGA的數據采集器以及IIC總線的模數轉換器部分、通訊部分的電路設計。其中FPGA采用Xilinx公司Spartan-Ⅱ系列的XC2S100芯片,在芯片中嵌入32位軟處理器MicroBlaze;ⅡC總線的模數轉換采用Microchip公司的MCP3221芯片,通訊部分則在FPGA片內用VHDL語言實現。通過上述設計實現了“準單片化”的模擬量和數字量的數據采集和處理。 所設計的數據采集器可以和結構類似的上位機通訊,本課題完成了在上位機中用VHDL語言實現的通信電路模塊。通過上述兩部分工作,將微處理器、數據存儲器、程序存儲器等數字邏輯電路均集成在同一個FPGA內部,形成一個可編程的片上系統(tǒng)。FPGA片外僅為模擬器件和開關量驅動芯片。FPGA內部的硬件電路采用VHDL語言編寫;MCU軟核工作所需要的程序采用C語言編寫。多臺數據采集器與服務器構成數據采集系統(tǒng)。服務器端軟件用VB開發(fā),既可以將實時采集的數據以數字方式顯示,也可以用更加直觀的曲線方式顯示。 由于數據采集器是所有自控類系統(tǒng)所必需的電路模塊,所以一個通用的片上系統(tǒng)設計可以解決各類系統(tǒng)的應用問題,達到“設計復用”(DesignReuse)的目的。采用基于FPGA的SOPC設計的更加突出的優(yōu)點是不必更換芯片就可以實現設計的改進和升級,同時也可以降低成本和提高可靠性。
標簽: FPGA SOPC 數據采集系統(tǒng)
上傳時間: 2013-07-12
上傳用戶:a155166
在信息化社會中,LED顯示屏作為一種信息的傳播媒體,在交通、天氣預報、廣告、通知、工農業(yè)生產、商業(yè)信息等領域應用十分廣泛,已經成為城市信息現代化建設的標志。 本文介紹了LED顯示屏國內外的發(fā)展現狀,在分析LED顯示屏工作原理后,結合LED顯示屏控制系統(tǒng)及顯示驅動設備的具體要求,提出了使用嵌入式處理器LPC2124作為控制核心,使用挪威Nordic公司推出的單片射頻發(fā)射器nRF905傳送無線顯示信息的總體設計方案。由于LPC2124所具有的豐富的接口資源,使用其SPI口實現了和驅動芯片SD16726的串行傳輸,這在很大程度上簡化了系統(tǒng)結構,增加了系統(tǒng)的可靠性。單片收發(fā)芯片實現無線數據顯示信息傳遞與更新,避免了使用基于中國移動通訊運營商的GSM/GPRS通信網絡的數據傳輸,而帶來在信息更新時的額外開銷費用。在系統(tǒng)硬件設計中,給出了各功能模塊:包括電源、時鐘電路、存儲器的擴展、射頻模塊、LED掃描驅動模塊等的具體設計。最后,在系統(tǒng)軟件設計中,完成了對顯示屏數據的發(fā)送、接收數據和對顯示屏進行顯示控制驅動程序設計,最終實現整個系統(tǒng)的功能。在設計過程中,通過做各種測試和試驗,驗證了基于ARM的無線LED顯示屏系統(tǒng)的設計是完全可行的,具有非常廣闊的應用前景。
標簽: ARM LED 無線 顯示屏
上傳時間: 2013-06-07
上傳用戶:wanghui2438
本文描述了智能直流調速系統(tǒng)的硬件設計思路,給出實現微型直流電機(12v—55v)的控制方案。應用運動控制芯片LM629和電動機驅動芯片LMD18200實現了直流電動機的智能控制。關鍵詞
標簽: 全數字 直流調速 系統(tǒng)設計
上傳用戶:erkuizhang
蟲蟲下載站版權所有 京ICP備2021023401號-1