Understanding of software development Methodologies and concepts, experience with full product lifecycle from scope to customer release
5. Strong design decomposition skills, analysis and testing
6. Proactive approach to problem solving
7. Strong communication skills are paramount as is drive and determination, and stron
XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接
The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes Methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering theMethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
XAPP520將符合2.5V和3.3V I/O標準的7系列FPGA高性能I/O Bank進行連接
The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes Methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
Prakash Rashinkar has over 15 years experience in system design and verificationof embedded systems for communication satellites, launch vehicles and spacecraftground systems, high-performance computing, switching, multimedia, and wirelessapplications. Prakash graduated with an MSEE from Regional Engineering College,Warangal, in India. He lead the team that was responsible for delivering theMethodologies for SOC verification at Cadence Design Systems. Prakash is anactive member of the VSIA Functional Verification DWG. He is currently Architectin the Vertical Markets and Design Environments Group at Cadence.
The Network Security Response Framework (NSRF) allows for testing different computer security response engines and Methodologies. It supports simulated and real: Intrusion Detection Systems (sensors), Attacks, and Responses.