目的:自主研制一款超聲手術刀電源控制系統,以減少能量的消耗,維持手術刀的正常溫度。方法:對超聲換能器在諧振附近的等效電路建立模型,并設計基于數字信號處理(DSP)的超聲手術刀的硬件控制系統。結果:經對電源控制系統的電路和工作性能測試,生成的電流和電壓的有效值等參數,能夠及時調整電源的頻率,并達到預期的功能指標,使超聲手術刀工作在諧振狀態。結論:以DSP為核心設計的超聲手術刀電源控制系統,測試指標均能夠達到預期的要求,能夠使系統在諧振狀態下工作。Objective: To independently develop a power control system of ultrasonic scalpel so as to Reduce the energy consumption and maintain the normal temperature of ultrasonic scalpel. Methods: In this paper, the model of equivalent circuit of ultrasonic transducer nearby syntony was built up, and the hardware control system of ultrasonic scalpel based on digital signal processing(DSP) was designed. Results: Through testing the circuit and work performance of power control system, the series of parameters such as effective value and so on which were produced by this system could adjust frequency of power source in time and attain anticipative functional indicator, and it took the ultrasonic scalpel to work in syntonic situation. Conclusion: The tested indicators of power control system of ultrasonic scalpel based on the kernel design of DSP can attain anticipative requirement, and can take this system to work in syntonic situation.
標簽:
數字信號處理
超聲手術刀
電源控制
上傳時間:
2022-04-03
上傳用戶:bluedrops
應用無跡卡爾曼濾波算法(UKF)進行鋰電池的SOC估計,采用Thevenin二階RC等效電路模型,對HPPC電池脈沖充放電實驗數據進行Matlab處理,得到較為準確的模型.通過在Matlab中編寫算法程序,對不同工況的估計值與實際值進行誤差估算及對比分析,通過此算法進行SOC估計,得到該算法可有效降低系統誤差并糾正SOC的初值偏差.The non trace Calman filter (UKF) is applied to the SOC estimation of lithium battery. The Thevenin two order RC equivalent circuit model is used to process the HPPC battery pulse charge discharge experimental data by Matlab processing, and a more accurate model is obtained. By writing algorithm program in Matlab, the error estimation and comparison analysis of the estimated value and actual value of different states are carried out, and the SOC estimation is carried out by this algorithm. The algorithm can effectively Reduce the system error and correct the initial value deviation of the SOC.
標簽:
卡爾曼濾波
上傳時間:
2022-05-03
上傳用戶:默默