怎樣判斷IGBT MOS管的好壞?怎么檢測它的引腳?IGBT1、判斷極性首先將萬用表撥在R×1KΩ 擋,用萬用表測量時, 若某一極與其它兩極阻值為無窮大,調換表筆后該極與其它兩極的阻值仍為無窮大, 則判斷此極為柵極(G )。其余兩極再用萬用表測量, 若測得阻值為無窮大, 調換表筆后測量阻值較小。在測量阻值較小的一次中,則判斷紅表筆接的為集電極( C);黑表筆接的為發(fā)射極(E)。2、判斷好壞將萬用表撥在R×10KΩ 擋,用黑表筆接IGBT 的集電極(C),紅表筆接IGBT 的發(fā)射極( E),此時萬用表的指針在零位。用手指同時觸及一下柵極( G)和集電極(C),這時IGBT 被觸發(fā)導通,萬用表的指針擺向阻值較小的方向,并能站住指示在某一位置。然后再用手指同時觸及一下柵極( G)和發(fā)射極( E),這時IGBT 被阻斷,萬用表的指針回零。此時即可判斷IGBT 是好的。3、注意事項任何指針式萬用表皆可用于檢測IGBT。注意判斷IGBT 好壞時,一定要將萬用表撥在R×10KΩ 擋,因R×1KΩ 擋以下各檔萬用表內部電池電壓太低,檢測好壞時不能使IGBT 導通,而無法判斷IGBT 的好壞。此方法同樣也可以用于檢測功率場效應晶體管( P-MOSFET )的好壞。現(xiàn)在經(jīng)常要檢測MOS 管了,轉幾篇MOS 管的檢測方法,以備隨時觀摩!用萬用表檢測MOS 開關管好壞的方法一、MOS 開關管針腳判斷:在電腦上, MOS 管都是N 溝道增強型的MOSFET 開關管, 大部分都采用TO-220F 封裝,其針腳判斷方法是:將針腳向下,印有型號的面向自己,左邊的是柵極,中間是漏極,右邊是源極。
上傳時間: 2022-06-22
上傳用戶:
高端懸浮自舉電源設計,耐壓可達100V內建死區(qū)控制電路自帶閉鎖功能,徹底杜絕上、下管輸出同時導通采用半橋達林頓管輸出結構具有1A 大電流柵極驅動能力 專用于無刷電機N 溝道MOS 管、IGBT 管柵極驅動HIN 輸入通道高電平有效,控制高端HO 輸出LIN 輸入通道低電平有效,控制低端LO 輸出外圍器件少靜態(tài)電流小:4.5mA 封裝形式:SOP-8
標簽: mos
上傳時間: 2022-01-02
上傳用戶:
le flows through MOS channel while Ih flows across PNP transistor Ih= a/(1-a) le, IE-le+lh=1/(1-a)' le Since IGBT has a long base PNP, a is mainly determined by ar si0 2ar= 1/cosh(1/La), La: ambipolar diff length a-0.5 (typical value)p MOSFET channel current (saturation), le=U"Cox"W(2"Lch)"(Vc-Vth)le Thus, saturated collector current Ic, sat=1/(1-a)"le=-1/(1-a)"UCox"W/(2Lch)"(Vo-Vth)2Also, transconductance gm, gm= 1/(1-a)"u' Cox W/Lch*(Vo-Vth)Turn-On1. Inversion layer is formed when Vge>Vth2. Apply positive collector bias, +Vce3. Electrons flow from N+ emitter to N-drift layer providing the base current for the PNP transistor4. Since J1 is forward blased, hole carriers are injected from the collector (acts as an emitter).5. Injected hole carriers exceed the doping level of N-drift region (conductivity modulation). Turn-Off1. Remove gate bias (discharge gate)2. Cut off electron current (base current, le, of pnp transistor)
標簽: igbt
上傳時間: 2022-06-20
上傳用戶:wangshoupeng199
摘要:對幾種三相逆變器中常用的IGBT驅動專用集成電路進行了詳細的分析,對TLP250,EXB系列和M579系列進行了深入的討論,給出了它們的電氣特性參數(shù)和內部功能方框圖,還給出了它們的典型應用電路。討論了它們的使用要點及注意事項,對每種驅動芯片進行了IGBT的驅動實驗,通過有關的波形驗證了它們的特點,最后得出結論:IGBT驅動集成電路的發(fā)展趨勢是集過流保護、驅動信號放大功能、能夠外接電源且具有很強抗干擾能力等于一體的復合型電路。關鍵詞:絕緣柵雙極晶體管:集成電路;過流保護1前言電力電子變換技術的發(fā)展,使得各種各樣的電力電子器件得到了迅速的發(fā)展.20世紀80年代,為了給高電壓應用環(huán)境提供一種高輸入阻抗的器件,有人提出了絕緣門極雙極型品體管(IGBT)[1].在IGBT中,用一個MoS門極區(qū)來控制寬基區(qū)的高電壓雙極型晶體管的電流傳輸,這藏產(chǎn)生了一種具有功率MOSFET的高輸入阻抗與雙極型器件優(yōu)越通態(tài)特性相結合的非常誘人的器件,它具有控制功率小、開關速度快和電流處理能力大、飽和壓降低等性能。在中小功率、低噪音和高性能的電源、逆變器、不間斷電源(UPS)和交流電機調速系統(tǒng)的設計中,它是日前最為常見的一種器件。
上傳時間: 2022-06-21
上傳用戶:jiabin
在UPS中使用的功率器件有雙極型功率品體管、功率 MOSFET、可控硅和IGBT IGBT既有功率MOSFET 易于驅動,控制簡單、開關頻率高的優(yōu)點,又有功率品體管的導通電壓低,通態(tài)電流大的優(yōu)點、使用 IGBT成為UPS功率設計的首選,只有對 IGBT的特性充分了解和對電路進行可靠性設計,才能發(fā)揮 IGBT的優(yōu)點。本文介紹UPS中的IGBT的應用情況和使用中的注意事項。2.IGBT在UPS中的應用情況絕緣柵雙極型晶體管(IGBT)是一種MOSFET 與雙極晶體管復合的器件。據(jù)東芝公司資料,1200V/100A 的IGBT的導通電阻是同一耐壓規(guī)格的功率 MOSFET 的1/10,而開關時間是同規(guī)格 GTR的1/10。由于這些優(yōu)點,IGBT廣泛應用于不間斷電源系統(tǒng)(UPS)的設計中。這種使用 IGBT的在線式UPS具有效率高,抗沖擊能力強、可靠性高的顯著優(yōu)點。UPS主要有后備式、在線互動式和在線式三種結構。在線式 UPS以其可靠性高,輸出電壓穩(wěn)定,無中斷時間等顯著優(yōu)點,廣泛用于通信系統(tǒng)、稅務、金融、證券、電力、鐵路、民航、政府機關的機房中。本文以在線式為介紹對象,UPS中的1GBT的應用。
上傳時間: 2022-06-22
上傳用戶:
IGBT(Insulated Gate Bipolar Transistor)絕緣柵雙極型品體管,是由BJT(雙極型三極管)和MOS(絕緣柵型場效應管)組成的復合全控型電壓驅動式功率半導體器件,兼有MOSFEt高輸入阻抗和GT的低導通壓降兩方面的優(yōu)點。IGB綜合了以上兩種器件的優(yōu)點,驅動功率小而飽和壓降低。成為功率半導體器件發(fā)展的主流,廣泛應用于風電、光伏、電動汽車、智能電網(wǎng)等行業(yè)中。在電動汽車行業(yè)中,電機控制器、輔助動力系統(tǒng),電動空調中,IGBT有著廣泛的使用,大功率IGB多應用于電機控制器中,由于電動汽車電機控制器工作環(huán)境干擾比較大,IGBT的門極分布電容及實際開關中存在的米勒效應等寄生參數(shù)的直接影響到驅動電路的可靠性1電機控制器在使用過程中,在過流、短路和過壓的情況下要對1GBT實行比較完善的保護。過流會引起電機控制器的溫度上升,可通過溫度傳感器來進行檢測,并由相應的電路來實現(xiàn)保護;過壓一般發(fā)生在IGBT關斷時,較大的di/dt會在寄生電感上產(chǎn)生了較高的電壓,可通過采用緩沖電路來鉗制,或者適當降低開關速率。短路故障發(fā)生后瞬時就會產(chǎn)生極大的電流,很快就會損壞1GBT,主控制板的過流保護根本來不及,必須由硬件電路控制驅動電路瞬間加以保護。因此驅動器的設計過程中,保護功能設計得是否完善,對系統(tǒng)的安全運行尤其重要。
上傳時間: 2022-06-22
上傳用戶:XuVshu
IGBT是MOSFET和GTR的復合器件,它具有開關速度快、熱穩(wěn)定性好、驅動功率小和驅動電路簡單的特點,又具有通態(tài)壓降小、耐壓高和承受電流大等優(yōu)點.IGBT作為主流的功率輸出器件,特別是在大功率的場合,已經(jīng)被廣泛的應用于各個領域。本文在介紹了1GBT結構、工作特性的基礎上,針對風電變流器實驗平臺和岸電電源的實際應用,選擇了各自的IGBT模塊。然后對IGBT的驅動電路進行了深入地研究,詳細地說明了IGBT對柵極驅動的一些特殊要求及應該滿足的條件。接著對三種典型的驅動模塊進行了分析,同時分別針對風電變流器實驗平臺和岸電電源,設計了三菱的M57962AL和Concept的2SD315A驅動模塊的外圍驅動電路。對于大功率的設備,電路中經(jīng)常會遇到過流、過壓、過溫的問題,因此必要的保護措施是必不可少的。針對上述問題,本文分析了出現(xiàn)各種狀況的原因,并給出了各自的解決方案:采用分散式和集中式過流保護相結合的方法實現(xiàn)過電流保護;采用緩存吸收電路及采樣檢測電路以防止過電壓的出現(xiàn);通過選擇正確的散熱器及利用鉑電阻的特性來實施檢測溫度,從而使電路能夠更好地可靠運行。同時,為了滿足今后1.5MW風電變流器和試驗電源等更大功率設備的需求,在性價比上更傾向于采用IGBT模塊串、并聯(lián)的方式來取代高耐壓、大電流的單管1GBT.本文就同一橋臂的IGBT串聯(lián)不均壓,并聯(lián)不均流的問題進行了闡述,并給出了相應的解決方案。最后針對上述的不平衡情形,采用PSpice對其進行仿真模擬,并通過加入均壓、均流電路后的仿真結果,有效地說明了電路的可行性。
上傳時間: 2022-06-22
上傳用戶:
MOSFET柵極應用電路分析匯總.pdf 理解功率-理解功率MOSFET管的電流.pdf 何種應用條件要考慮MOSFET雪崩能量.doc 66KB2019-10-08 11:34 反激式電源中MOSFET的鉗位電路.pdf 1.3M2019-10-08 11:34 (核心)MOSFET柵極應用電路分析匯總.pdf 762KB2019-10-08 11:34 MOS管驅動電阻怎么選擇.doc 254KB2019-10-08 11:34 采用電壓箝位控制實現(xiàn)串聯(lián)IGBT的動態(tài)均壓.pdf 868KB2019-10-08 11:34 MOSFET驅動器與MOSFET柵極電荷匹配設計.pdf 理解MOSFET的每個特性參數(shù)的分析.pdf 讀懂并理解MOSFET的Datasheet.pdf 2M2019-10-08 11:34 功率MOSFET并聯(lián)驅動特性分析.pdf 592KB2019-10-08 11:34 功率MOSFET的高溫特性及其安全工作區(qū)分析.pdf 118KB2019-10-08 11:34 MOS管驅動電阻怎么選擇.pdf 1009KB2019-10-08 11:34 并聯(lián)MOSFET的雪崩特性分析.doc 229KB2019-10-08 11:34 MOSFET并聯(lián)技術 -2019-10-08 11:34 IGBT -2019-10-08 11:34 MOSFET驅動電阻功耗討論-綜合電源技術-世紀電源網(wǎng)社區(qū).pdf 3.8M2019-10-08 11:34 MOS管與三極管的區(qū)別作用特性參數(shù).pdf 2.3M2019-10-08 11:34 MOSFET驅動方式詳解.pdf 592KB2019-10-08 11:34 (核心)MOSFET開關詳細過程.pdf 1.3M2019-10-08 11:34 關于MOSFET驅動電阻值的計算.doc 80KB2019-10-08 11:34 理解功率MOSFET的電流.pdf 1.8M2019-10-08 11:34 IR系列MOS驅動ic中文應用手冊.pdf 5.5M2019-10-08 11:34 功率MOSFET和IGBT.pdf 1.5M2019-10-08 11:34 如何確定MOSFET的驅動電阻.pdf 977KB2019-10-08 11:34 張興柱之MOSFET分析.pdf 1.6M2019-10-08 11:34 MOSFET驅動電路設計參考.pdf 369KB2019-10-08 11:34 MOSFET的雪崩能量與器件的熱性能.doc 264KB2019-10-08 11:34 mos管的最大持續(xù)電流是如何確定.pdf 929KB2019-10-08 11:34 (核心)功率MOSFET的特性.pdf 3.8M2019-10-08 11:34 MOSFET選型手冊(ALPHA&OMEGA).pdf …………
上傳時間: 2013-07-01
上傳用戶:eeworm
IGBT討論
標簽: IGBT
上傳時間: 2013-06-19
上傳用戶:eeworm
三極管,MOS管 樣本
上傳時間: 2013-04-15
上傳用戶:eeworm