Design techniques for electronic systems areconstantly changing. In industries at the heart of thedigital revolution, this change is especially acute.Functional integration, dramatic increases incomplexity, new standards and protocols, costconstraints, and increased time-to-market pressureshave bolstered both the design challenges and theopportunities to develop modern electronic systems.One trend driving these changes is the increasedintegration of core logic with previously discretefunctions to achieve higher performance and morecompact board designs.
標(biāo)簽: System Xilinx FPGA 151
上傳時(shí)間: 2013-11-23
上傳用戶:kangqiaoyibie
Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the developmentof designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit theDocumentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reservesthe right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errorscontained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection withtechnical support or assistance that may be provided to you in connection with the Information.
標(biāo)簽: Virtex FPGA PCB 設(shè)計(jì)手冊(cè)
上傳時(shí)間: 2013-11-11
上傳用戶:zwei41
The CoolRunner-II CPLD is a highly uniform family of fast, low-power devices. Theunderlying architecture is a traditional CPLD architecture, combining macrocells intofunction blocks interconnected with a global routing matrix, the Xilinx AdvancedInterconnect Matrix (AIM). The function blocks use a PLA configuration that allowsall product terms to be routed and shared among any of the macrocells of the functionblock.
上傳時(shí)間: 2013-11-03
上傳用戶:1037540470
According to CIBC World Markets, Equity Research, theFlat Panel Display (FPD) industry has achieved sufficientcritical mass for its growth to explode. Thus, it can nowattract the right blend of capital investments and R&Dresources to drive technical innovation toward continuousimprovement in view quality, manufacturing efficiency,and system integration. These in turn are sustainingconsumer interest, penetration, revenue growth, and thepotential for increasing long-term profitability for industryparticipants. CIBC believes that three essential conditionsare now converging to drive the market forward
上傳時(shí)間: 2015-01-02
上傳用戶:小楓殘?jiān)?/p>
This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board
標(biāo)簽: XAPP 740 AXI 互聯(lián)
上傳時(shí)間: 2013-11-23
上傳用戶:shen_dafa
XAPP520將符合2.5V和3.3V I/O標(biāo)準(zhǔn)的7系列FPGA高性能I/O Bank進(jìn)行連接 The I/Os in Xilinx® 7 series FPGAs are classified as either high range (HR) or high performance (HP) banks. HR I/O banks can be operated from 1.2V to 3.3V, whereas HP I/O banks are optimized for operation between 1.2V and 1.8V. In circumstances that require an HP 1.8V I/O bank to interface with 2.5V or 3.3V logic, a range of options can be deployed. This application note describes methodologies for interfacing 7 series HP I/O banks with 2.5V and 3.3V systems
上傳時(shí)間: 2013-11-06
上傳用戶:wentianyou
一些應(yīng)用利用 Xilinx FPGA 在每次啟動(dòng)時(shí)可改變配置的能力,根據(jù)所需來(lái)改變 FPGA 的功能。Xilinx Platform Flash XCFxxP PROM 的設(shè)計(jì)修訂 (Design Revisioning) 功能,允許用戶在單個(gè)PROM 中將多種配置存儲(chǔ)為不同的修訂版本,從而簡(jiǎn)化了 FPGA 配置更改。在 FPGA 內(nèi)部加入少量的邏輯,用戶就能在 PROM 中存儲(chǔ)的多達(dá)四個(gè)不同的修訂版本之間進(jìn)行動(dòng)態(tài)切換。多重啟動(dòng)或從多個(gè)設(shè)計(jì)修訂進(jìn)行動(dòng)態(tài)重新配置的能力,與 Spartan™-3E FPGA 和第三方并行 flashPROM 一起使用時(shí)所提供的 MultiBoot 選項(xiàng)相似。本應(yīng)用指南將進(jìn)一步說(shuō)明 Platform Flash PROM 如何提供附加選項(xiàng)來(lái)增強(qiáng)配置失敗時(shí)的安全性,以及如何減少引腳數(shù)量和板面積。此外,Platform Flash PROM 還為用戶提供其他優(yōu)勢(shì):iMPACT 編程支持、單一供應(yīng)商解決方案、低成本板設(shè)計(jì)和更快速的配置加載。本應(yīng)用指南還詳細(xì)地介紹了一個(gè)包含 VHDL 源代碼的參考設(shè)計(jì)。
標(biāo)簽: Platform Flash XAPP PROM
上傳時(shí)間: 2013-10-10
上傳用戶:wangcehnglin
WP369可擴(kuò)展式處理平臺(tái)-各種嵌入式系統(tǒng)的理想解決方案 :Delivering unrivaled levels of system performance,flexibility, scalability, and integration to developers,Xilinx's architecture for a new Extensible Processing Platform is optimized for system power, cost, and size. Based on ARM's dual-core Cortex™-A9 MPCore processors and Xilinx’s 28 nm programmable logic,the Extensible Processing Platform takes a processor-centric approach by defining a comprehensive processor system implemented with standard design methods. This approach provides Software Developers a familiar programming environment within an optimized, full featured,powerful, yet low-cost, low-power processing platform.
標(biāo)簽: 369 WP 擴(kuò)展式 處理平臺(tái)
上傳時(shí)間: 2013-10-18
上傳用戶:cursor
本文著重介紹了 Xilinx Platform Flash PROM 如何幫助系統(tǒng)和電路板設(shè)計(jì)人員簡(jiǎn)化 FPGA 配置設(shè)計(jì)。用于配置 FPGA 的可選解決方案有很多,但它們通常都需要大量的前期設(shè)計(jì)工作和時(shí)間。Platform Flash 是為配置 Xilinx FPGA 專門設(shè)計(jì)的一款包括硬件和軟件支持在內(nèi)的整體解決方案。
上傳時(shí)間: 2013-11-02
上傳用戶:lixinxiang
FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development
標(biāo)簽: Methodology Design Reuse FPGA
上傳時(shí)間: 2013-11-01
上傳用戶:shawvi
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1