The PCA9537 is a 10-pin CMOS device that provides 4 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provide a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.
上傳時間: 2013-10-14
上傳用戶:wuchunzhong
The PCA9538 is a 16-pin CMOS device that provides 8 bits of General Purpose parallelInput/Output (GPIO) expansion with interrupt and reset for I2C-bus/SMBus applicationsand was developed to enhance the NXP Semiconductors family of I2C-bus I/O expanders.I/O expanders provide a simple solution when additional I/O is needed for ACPI powerswitches, sensors, push-buttons, LEDs, fans, etc.
上傳時間: 2014-01-24
上傳用戶:youmo81
The PCA9539; PCA9539R is a 24-pin CMOS device that provides 16 bits of GeneralPurpose parallel Input/Output (GPIO) expansion with interrupt and reset forI2C-bus/SMBus applications and was developed to enhance the NXP Semiconductorsfamily of I2C-bus I/O expanders. I/O expanders provide a simple solution when additionalI/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.
上傳時間: 2013-11-10
上傳用戶:ewtrwrtwe
The PCA9544A provides 4 interrupt inputs, one for each channeland one open drain interrupt output. When an interrupt is generated byany device, it will be detected by the PCA9544A and the interruptoutput will be driven LOW. The channel need not be active fordetection of the interrupt. A bit is also set in the control byte.bits 4 – 7 of the control byte correspond to channels 0 – 3 of thePCA9544A, respectively. Therefore, if an interrupt is generated byany device connected to channel 2, the state of the interrupt inputs isloaded into the control register when a read is accomplished.Likewise, an interrupt on any device connected to channel 0 wouldcause bit 4 of the control register to be set on the read. The mastercan then address the PCA9544A and read the contents of thecontrol byte to determine which channel contains the devicegenerating the interrupt. The master can then reconfigure thePCA9544A to select this channel, and locate the device generatingthe interrupt and clear it. The interrupt clears when the deviceoriginating the interrupt clears.
標簽: 4channel multiple 9544A 9544
上傳時間: 2014-12-28
上傳用戶:潛水的三貢
The PCA9549 provides eight bits of high speed TTL-compatible bus switching controlledby the I2C-bus. The low ON-state resistance of the switch allows connections to be madewith minimal propagation delay. Any individual A to B channel or combination of channelscan be selected via the I2C-bus, determined by the contents of the programmable Controlregister. When the I2C-bus bit is HIGH (logic 1), the switch is on and data can flow fromPort A to Port B, or vice versa. When the I2C-bus bit is LOW (logic 0), the switch is open,creating a high-impedance state between the two ports, which stops the data flow.An active LOW reset input (RESET) allows the PCA9549 to recover from a situationwhere the I2C-bus is stuck in a LOW state. Pulling the RESET pin LOW resets the I2C-busstate machine and causes all the bits to be open, as does the internal power-on resetfunction.
上傳時間: 2014-11-22
上傳用戶:xcy122677
The PCA9555 is a 24-pin CMOS device that provides 16 bits of General Purpose parallelInput/Output (GPIO) expansion for I2C-bus/SMBus applications and was developed toenhance the NXP Semiconductors family of I2C-bus I/O expanders. The improvementsinclude higher drive capability, 5 V I/O tolerance, lower supply current, individual I/Oconfiguration, and smaller packaging. I/O expanders provide a simple solution whenadditional I/O is needed for ACPI power switches, sensors, push buttons, LEDs, fans, etc.The PCA9555 consists of two 8-bit Configuration (Input or Output selection); Input, Outputand Polarity Inversion (active HIGH or active LOW operation) registers. The systemmaster can enable the I/Os as either inputs or outputs by writing to the I/O configurationbits. The data for each Input or Output is kept in the corresponding Input or Outputregister. The polarity of the read register can be inverted with the Polarity Inversionregister. All registers can be read by the system master. Although pin-to-pin and I2C-busaddress compatible with the PCF8575, software changes are required due to theenhancements, and are discussed in Application Note AN469.
上傳時間: 2013-11-13
上傳用戶:fredguo
Luminary Micro provides an analog-to-digital converter (ADC) module on some members of theStellaris microcontroller family. The hardware resolution of the ADC is 10 bits; however, due to noiseand other accuracy-diminishing factors, the true accuracy is less than 10 bits. This application noteprovides a software-based oversampling technique, resulting in an improved Effective Number Ofbits (ENOB) in the conversion result. This document describes methods of oversampling an inputsignal, and the impact on precision and overall system performance.
標簽: Oversampling Techniques ADC fo
上傳時間: 2013-12-17
上傳用戶:zhyiroy
Although Stellaris microcontrollers have generous internal SRAM capabilities, certain applicationsmay have data storage requirements that exceed the 8 KB limit of the Stellaris LM3S8xx seriesdevices. Since microcontrollers do not have an external parallel data-bus, serial memory optionsmust be considered. Until recently, the ubiquitous serial EEPROM/flash device was the only serialmemory solution. The major limitations of EEPROM and flash technology are slow write speed, slowerase times, and limited write/erase endurance.Recently, serial SRAM devices have become available as a solution for high-speed dataapplications. The N256S08xxHDA series of devices, from AMI Semiconductor, offer 32 K x 8 bits oflow-power data storage, a fast Serial Peripheral Interface (SPI) serial bus, and unlimited write cycles.The parts are available in 8-pin SOIC and compact TSSOP packages.
上傳時間: 2013-10-14
上傳用戶:cxl274287265
In this document, the term Ô60xÕ is used to denote a 32-bit microprocessor from the PowerPC architecture family that conforms to the bus interface of the PowerPC 601ª, PowerPC 603ª, or PowerPC 604 microprocessors. Note that this does not include the PowerPC 602ª microprocessor which has a multiplexed address/data bus. 60x processors implement the PowerPC architecture as it is speciÞed for 32-bit addressing, which provides 32-bit effective (logical) addresses, integer data types of 8, 16, and 32 bits,and ßoating-point data types of 32 and 64 bits (single-precision and double-precision).1.1 Overview The MPC106 provides an integrated high-bandwidth, high-performance, TTL-compatible interface between a 60x processor, a secondary (L2) cache or additional (up to four total) 60x processors, the PCI bus,and main memory. This section provides a block diagram showing the major functional units of the 106 and describes brießy how those units interact.Figure 1 shows the major functional units within the 106. Note that this is a conceptual block diagram intended to show the basic features rather than an attempt to show how these features are physically implemented on the device.
上傳時間: 2013-10-08
上傳用戶:18711024007
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-Pulse method, and anew On-Board Programming technique (OBP).Quick Pulse programming is a method using a number of devicepins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-Pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-Pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick Pulse method impractical in almost all87C51 family applications.
上傳時間: 2013-10-21
上傳用戶:xiaozhiqban