The introduction of Spartan-3™ devices has createdmultiple changes in the evolution of embedded controldesigns and pushed processing capabilities to the “almostfreestage.” With these new FPGAs falling under $20, involume, with over 1 million system gates, and under $5for 100K gate-level units, any design with programmablelogic has a readily available 8- or 16-bit processor costingless than 75 cents and 32-bit processor for less than $1.50.
WP409利用Xilinx FPGA打造出高端比特精度和周期精度浮點(diǎn)DSP算法實(shí)現(xiàn)方案:
High-Level Implementation of Bit- and Cycle-Accurate Floating-Point DSP Algorithms with Xilinx FPGAs
In this paper, we discuss efficient coding and design styles using verilog. This can beimmensely helpful for any digital designer initiating designs. Here, we address different problems rangingfrom RTL-Gate Level simulation mismatch to race conditions in writing behavioral models. All theseproblems are accompanied by an example to have a better idea, and these can be taken care off if thesecoding guidelines are followed. Discussion of all the techniques is beyond the scope of this paper, however,here we try to cover a few of them.
This document was developed under the Standard Hardware and Reliability Program (SHARP) TechnologyIndependent Representation of Electronic Products (TIREP) project. It is intended for use by VHSIC HardwareDescription Language (VHDL) design engineers and is offered as guidance for the development of VHDL modelswhich are compliant with the VHDL Data Item Description (DID DI-EGDS-80811) and which can be providedto manufacturing engineering personnel for the development of production data and the subsequent productionof hardware. Most VHDL modeling performed to date has been concentrated at either the component level orat the conceptual system level. The assembly and sub-assembly levels have been largely disregarded. Under theSHARP TIREP project, an attempt has been made to help close this gap. The TIREP models are based upon lowcomplexity Standard Electronic Modules (SEM) of the format A configuration. Although these modules are quitesimple, it is felt that the lessons learned offer guidance which can readily be applied to a wide range of assemblytypes and complexities.
FPGAs have changed dramatically since Xilinx first introduced them just 15 years ago. In thepast, FPGA were primarily used for prototyping and lower volume applications; custom ASICswere used for high volume, cost sensitive designs. FPGAs had also been too expensive and tooslow for many applications, let alone for System Level Integration (SLI). Plus, the development
UART 4 UART參考設(shè)計(jì),Xilinx提供VHDL代碼 uart_vhdl
This zip file contains the following folders:
\vhdl_source -- Source VHDL files:
uart.vhd - top level file
txmit.vhd - transmit portion of uart
rcvr.vhd - - receive portion of uart
\vhdl_testfixture -- VHDL Testbench files. This files only include the testbench behavior, they
do not instantiate the DUT. This can easily be done in a top-level VHDL
file or a schematic. This folder contains the following files:
txmit_tb.vhd -- Test bench for txmit.vhd.
rcvr_tf.vhd -- Test bench for rcvr.vhd.
The revolution of automation on factory floors is a key driver for the seemingly insatiable demand for higher productivity, lower total cost of ownership,and high safety. As a result, industrial applications drive an insatiable demand of higher data bandwidth and higher system-level performance.
This white paper describes the trends and challenges seen by designers and how FPGAs enable solutions to meet their stringent design goals.