亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

high-performance

  • WP312-Xilinx新一代28nm FPGA技術簡介

    Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.

    標簽: Xilinx FPGA 312 WP

    上傳時間: 2014-12-28

    上傳用戶:zhang97080564

  • XAPP740利用AXI互聯(lián)設計高性能視頻系統(tǒng)

    This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX  and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board

    標簽: XAPP 740 AXI 互聯(lián)

    上傳時間: 2013-11-14

    上傳用戶:fdmpy

  • 如何選擇補償?shù)墓鑹毫鞲衅?/a>

    Abstract: This reference design provides design ideas for a cost-effective, low-power liquid-level measurement dataacquisition system (DAS) using a compensated silicon pressure sensor and a high-precision delta-sigma ADC. Thisdocument discusses how to select the compensated silicon pressure sensor, suggest system algorithms, and providenoise analyses. It also describes calibration ideas to improve system performance while also reducing complexity andcost.

    標簽: 如何選擇 補償 硅壓力傳感器

    上傳時間: 2013-10-08

    上傳用戶:sjy1991

  • lpc2292/lpc2294 pdf datasheet

    The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 256 kB of embedded high-speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at the maximum clock rate. For critical code size applications, the alternative 16-bit Thumb mode reduces code by more than 30 pct with minimal performance penalty. With their 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. The number of available fast GPIOs ranges from 76 (with external memory) through 112 (single-chip). With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications. Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from other devices only when necessary.

    標簽: lpc datasheet 2292 2294

    上傳時間: 2014-12-30

    上傳用戶:aysyzxzm

  • 移動無線終端導航AFE和數(shù)據(jù)轉換器

    Abstract: High-speed and low-speed data converters serve critical functions in modern broadband mobile radios. This application note outlines how todetermine high-speed data converter performance requirements in baseband sampling radio architectures. Also, system partition strategies andadvantages are outlined when considering a high-speed analog front-end (AFE) solution.

    標簽: AFE 移動 無線終端 導航

    上傳時間: 2013-11-02

    上傳用戶:jjj0202

  • Xilinx UltraScale:新一代架構滿足您的新一代架構需求(EN)

      中文版詳情瀏覽:http://www.elecfans.com/emb/fpga/20130715324029.html   Xilinx UltraScale:The Next-Generation Architecture for Your Next-Generation Architecture    The Xilinx® UltraScale™ architecture delivers unprecedented levels of integration and capability with ASIC-class system- level performance for the most demanding applications.   The UltraScale architecture is the industr y's f irst application of leading-edge ASIC architectural enhancements in an All Programmable architecture that scales from 20 nm planar through 16 nm FinFET technologies and beyond, in addition to scaling from monolithic through 3D ICs. Through analytical co-optimization with the X ilinx V ivado® Design Suite, the UltraScale architecture provides massive routing capacity while intelligently resolving typical bottlenecks in ways never before possible. This design synergy achieves greater than 90% utilization with no performance degradation.   Some of the UltraScale architecture breakthroughs include:   • Strategic placement (virtually anywhere on the die) of ASIC-like system clocks, reducing clock skew by up to 50%    • Latency-producing pipelining is virtually unnecessary in systems with massively parallel bus architecture, increasing system speed and capability   • Potential timing-closure problems and interconnect bottlenecks are eliminated, even in systems requiring 90% or more resource utilization   • 3D IC integration makes it possible to build larger devices one process generation ahead of the current industr y standard    • Greatly increased system performance, including multi-gigabit serial transceivers, I/O, and memor y bandwidth is available within even smaller system power budgets   • Greatly enhanced DSP and packet handling   The Xilinx UltraScale architecture opens up whole new dimensions for designers of ultra-high-capacity solutions.

    標簽: UltraScale Xilinx 架構

    上傳時間: 2013-11-21

    上傳用戶:wxqman

  • 《器件封裝用戶向導》賽靈思產(chǎn)品封裝資料

    Introduction to Xilinx Packaging Electronic packages are interconnectable housings for semiconductor devices. The major functions of the electronic packages are to provide electrical interconnections between the IC and the board and to efficiently remove heat generated by the device. Feature sizes are constantly shrinking, resulting in increased number of transistors being packed into the device. Today's submicron technology is also enabling large-scale functional integration and system-on-a-chip solutions. In order to keep pace with these new advancements in silicon technologies, semiconductor packages have also evolved to provide improved device functionality and performance. Feature size at the device level is driving package feature sizes down to the design rules of the early transistors. To meet these demands, electronic packages must be flexible to address high pin counts, reduced pitch and form factor requirements. At the same time,packages must be reliable and cost effective.

    標簽: 封裝 器件 用戶 賽靈思

    上傳時間: 2013-11-21

    上傳用戶:不懂夜的黑

  • XAPP740利用AXI互聯(lián)設計高性能視頻系統(tǒng)

    This application note covers the design considerations of a system using the performance features of the LogiCORE™ IP Advanced eXtensible Interface (AXI) Interconnect core. The design focuses on high system throughput through the AXI Interconnect core with F MAX  and area optimizations in certain portions of the design. The design uses five AXI video direct memory access (VDMA) engines to simultaneously move 10 streams (five transmit video streams and five receive video streams), each in 1920 x 1080p format, 60 Hz refresh rate, and up to 32 data bits per pixel. Each VDMA is driven from a video test pattern generator (TPG) with a video timing controller (VTC) block to set up the necessary video timing signals. Data read by each AXI VDMA is sent to a common on-screen display (OSD) core capable of multiplexing or overlaying multiple video streams to a single output video stream. The output of the OSD core drives the DVI video display interface on the board. Performance monitor blocks are added to capture performance data. All 10 video streams moved by the AXI VDMA blocks are buffered through a shared DDR3 SDRAM memory and are controlled by a MicroBlaze™ processor. The reference system is targeted for the Virtex-6 XC6VLX240TFF1156-1 FPGA on the Xilinx® ML605 Rev D evaluation board

    標簽: XAPP 740 AXI 互聯(lián)

    上傳時間: 2013-11-23

    上傳用戶:shen_dafa

  • WP312-Xilinx新一代28nm FPGA技術簡介

    Xilinx Next Generation 28 nm FPGA Technology Overview Xilinx has chosen 28 nm high-κ metal gate (HKMG) highperformance,low-power process technology and combined it with a new unified ASMBL™ architecture to create a new generation of FPGAs that offer lower power and higher performance. These devices enable unprecedented levels of integration and bandwidth and provide system architects and designers a fully programmable alternative to ASSPs and ASICs.

    標簽: Xilinx FPGA 312 WP

    上傳時間: 2013-12-07

    上傳用戶:bruce

  • pci e PCB設計規(guī)范

    This document provides practical, common guidelines for incorporating PCI Express interconnect layouts onto Printed Circuit Boards (PCB) ranging from 4-layer desktop baseboard designs to 10- layer or more server baseboard designs. Guidelines and constraints in this document are intended for use on both baseboard and add-in card PCB designs. This includes interconnects between PCI Express devices located on the same baseboard (chip-to-chip routing) and interconnects between a PCI Express device located “down” on the baseboard and a device located “up” on an add-in card attached through a connector. This document is intended to cover all major components of the physical interconnect including design guidelines for the PCB traces, vias and AC coupling capacitors, as well as add-in card edge-finger and connector considerations. The intent of the guidelines and examples is to help ensure that good high-speed signal design practices are used and that the timing/jitter and loss/attenuation budgets can also be met from end-to-end across the PCI Express interconnect. However, while general physical guidelines and suggestions are given, they may not necessarily guarantee adequate performance of the interconnect for all layouts and implementations. Therefore, designers should consider modeling and simulation of the interconnect in order to ensure compliance to all applicable specifications. The document is composed of two main sections. The first section provides an overview of general topology and interconnect guidelines. The second section concentrates on physical layout constraints where bulleted items at the beginning of a topic highlight important constraints, while the narrative that follows offers additional insight.  

    標簽: pci PCB 設計規(guī)范

    上傳時間: 2014-01-24

    上傳用戶:s363994250

主站蜘蛛池模板: 麦盖提县| 武定县| 长汀县| 乳山市| 林甸县| 桑植县| 东山县| 睢宁县| 台中县| 澄江县| 海门市| 平昌县| 弥渡县| 太保市| 自治县| 肇东市| 三河市| 荆门市| 聊城市| 庐江县| 鹿泉市| 乌恰县| 大冶市| 绥化市| 南阳市| 祥云县| 禹城市| 新邵县| 息烽县| 泽州县| 梅河口市| 青田县| 孝昌县| 浙江省| 定南县| 封开县| 宁阳县| 大兴区| 无棣县| 合作市| 垦利县|