Recent advances in low voltage silicon germaniumand BiCMOS processes have allowed the design andproduction of very high speed amplifi ers. Because theprocesses are low voltage, most of the amplifi er designshave incorporated differential inputs and outputs to regainand maximize total output signal swing. Since many lowvoltageapplications are single-ended, the questions arise,“How can I use a differential I/O amplifi er in a single-endedapplication?” and “What are the implications of suchuse?” This Design Note addresses some of the practicalimplications and demonstrates specifi c single-endedapplications using the 3GHz gain-bandwidth LTC6406differential I/O amplifi er.
上傳時間: 2013-11-23
上傳用戶:rocketrevenge
Many 8-bit and 16-bit microcontrollers feature 10-bitinternal ADCs. A few include 12-bit ADCs, but these oftenhave poor or nonexistent AC specifi cations, and certainlylack the performance to meet the needs of an increasingnumber of applications. The LTC®2366 and its slowerspeed versions offer a high performance alternative, asshown in the AC specifi cations in Table 1. Compare theseguaranteed specifi cations with the ADC built into yourcurrent microcontroller.
上傳時間: 2013-10-26
上傳用戶:jackandlee
Linear Technology’s High Frequency Product lineupincludes a variety of RF I/Q modulators. The purpose ofthis application note is to illustrate the circuits requiredto interface these modulators with several popular D/Aconverters. Such circuits typically are required to maximizethe voltage transfer from the DAC to the baseband inputsof the modulator, as well as provide some reconstructionfi ltering.
上傳時間: 2013-10-19
上傳用戶:FreeSky
This publication represents the largest LTC commitmentto an application note to date. No other application noteabsorbed as much effort, took so long or cost so much.This level of activity is justified by our belief that high speedmonolithic amplifiers greatly interest users.
標簽: 高速放大器
上傳時間: 2014-01-07
上傳用戶:wfl_yy
ADC制造商在數(shù)據(jù)手冊中定義ADC性能的方式令人困惑,并且可能會在應用開發(fā)中導致錯誤的推斷。最大的困惑也許就是“分辨率”和“精確度”了——即Resolution和Accuracy,這是兩個不同的參數(shù),卻經(jīng)常被混用,但事實上,分辨率并不能代表精確度,反之亦然。本文提出并解釋了ADC“分辨率”和“精確度”,它們與動態(tài)范圍、噪聲層的關系,以及在諸如計量等應用中的含義。
上傳時間: 2013-11-06
上傳用戶:gxrui1991
The MAX2691 low-noise amplifier (LNA) is designed forGPS L2 applications. Designed in Maxim’s advancedSiGe process, the device achieves high gain andlow noise figure while maximizing the input-referred 1dBcompression point and the 3rd-order intercept point. TheMAX2691 provides a high gain of 17.5dB and sub 1dBnoise figure.
標簽: Amplifier Low-Noise 2691 Band
上傳時間: 2014-12-04
上傳用戶:zaocan888
The LM20, LM45, LM50, LM60, LM61, and LM62 are analog output temperature sensors. They have various output voltage slopes (6.25mV/°C to 17mV/°C) and power supply voltage ranges (2.4V to 10V).The LM20 is the smallest, lowest power consumption analog output temperature sensor National Semiconductor has released. The LM70 and LM74 are MICROWIRE/SPI compatible digital temperature sensors. The LM70 has a resolution of 0.125°C while the LM74 has a resolution of 0.625°C. The LM74 is the most accurate of the two with an accuracy better than ±1.25°C. The LM75 is National’s first digital output temperature sensor, released several years ago.
標簽: temperatu tiny 遠程系統(tǒng) 溫度傳感器
上傳時間: 2014-12-23
上傳用戶:yl8908
Differential Nonlinearity: Ideally, any two adjacent digitalcodes correspond to output analog voltages that are exactlyone LSB apart. Differential non-linearity is a measure of theworst case deviation from the ideal 1 LSB step. For example,a DAC with a 1.5 LSB output change for a 1 LSB digital codechange exhibits 1⁄2 LSB differential non-linearity. Differentialnon-linearity may be expressed in fractional bits or as a percentageof full scale. A differential non-linearity greater than1 LSB will lead to a non-monotonic transfer function in aDAC.Gain Error (Full Scale Error): The difference between theoutput voltage (or current) with full scale input code and theideal voltage (or current) that should exist with a full scale inputcode.Gain Temperature Coefficient (Full Scale TemperatureCoefficient): Change in gain error divided by change in temperature.Usually expressed in parts per million per degreeCelsius (ppm/°C).Integral Nonlinearity (Linearity Error): Worst case deviationfrom the line between the endpoints (zero and full scale).Can be expressed as a percentage of full scale or in fractionof an LSB.LSB (Lease-Significant Bit): In a binary coded system thisis the bit that carries the smallest value or weight. Its value isthe full scale voltage (or current) divided by 2n, where n is theresolution of the converter.Monotonicity: A monotonic function has a slope whose signdoes not change. A monotonic DAC has an output thatchanges in the same direction (or remains constant) for eachincrease in the input code. the converse is true for decreasing codes.
標簽: Converters Defini DAC
上傳時間: 2013-10-30
上傳用戶:stvnash
•Founded in Jan. 08, 2001 in Shanghai, China.•Fabless IDH focused on Analog & Mixed Signal Chip design & marketing •Over 100 IC introduced.•Over 200 OEM Customer worldwide•ISO-9000 Certified•Distribution Channel in Taiwan, China & Japan To achieve 100% customer satisfactionby producing the technically advanced product with the best quality, on-time delivery and service. Leverages on proprietary process and world-class engineering team to develop innovative & high quality analog solutions that add value to electronics equipment.
標簽: Circuit Analog Design Porta
上傳時間: 2013-10-24
上傳用戶:songnanhua
前面討論了很多內容,基本上涉及了有關PCB板的絕大部分相關的知識。第二章探討了傳輸線的基本原理,第三章探討了串擾,在第四章里我們闡述了許多在現(xiàn)代設計中必須關注的非理想互連的問題。對于信號從驅動端引腳到接收端引腳的電氣路徑的相關問題,我們已經(jīng)做了一些探究,然而對于硅芯片,即處于封裝內部的IC來說,其信號傳輸通常要通過過孔和連接器來進行,對這樣的情況我們該如何處理?在本章中,我們將通過對封裝、過孔和連接器的研究,闡述其原理,從而指導大家在設計的時候對整個電氣路徑進行完整地分析,即從驅動端內部IC芯片的焊盤到接受器IC芯片的焊盤。
標簽: High-Speed Digital System desi
上傳時間: 2013-11-24
上傳用戶:maizezhen